

Welcome

Welcome to the MenpoFit documentation!

MenpoFit is a Python package for building, fitting and manipulating deformable
models. It includes state-of-the-art deformable modelling techniques implemented
on top of the Menpo project. Currently, the techniques that have been
implemented include:

	Active Appearance Model (AAM)

	Holistic, Patch-based, Masked, Linear, Linear Masked

	Lucas-Kanade Optimisation

	Cascaded-Regression Optimisation

	Active Pictorial Structures (APS)

	Weighted Gauss-Newton Optimisation with fixed Jacobian and Hessian

	Active Template Model (ATM)

	Holistic, Patch-based, Masked, Linear, Linear Masked

	Lucas-Kanade Optimisation

	Lucas-Kanade Image Alignment (LK)

	Forward Additive, Forward Compositional, Inverse Compositional

	Residuals: SSD, Fourier SSD, ECC, Gradient Correlation, Gradient Images

	Unified Active Appearance Model and Constrained Local Model (Unified AAM-CLM)

	Alternating/Project Out with Regularised Landmark Mean Shift

	Constrained Local Model (CLM)

	Active Shape Model

	Regularised Landmark Mean Shift

	Ensemble of Regression Trees (ERT) [provided by DLib [http://dlib.net/]]

	Supervised Descent Method (SDM)

	Non Parametric

	Parametric Shape

	Parametric Appearance

	Fully Parametric

Please see the to References for an indicative list of
papers that are relevant to the methods implemented in MenpoFit.

User Guide

The User Guide is designed to give you an overview of the key concepts within
MenpoFit. In particular, we want to try and explain some of the design decisions
that we made and demonstrate why we think they are powerful concepts for
building, fitting and analysing deformable models.

	Quick Start
	Basic Installation

	API Documentation

	Notebooks

	User Group and Issues

	Introduction
	What makes MenpoFit better?

	Core Interfaces

	Deformable Models

	Building Models

	Fitting Models
	Fitter Objects

	Fitting Methods

	Fitting Result
	Objects

	Attributes

	Visualizing Objects
	Visualizing Models

	Visualizing Fitting Result

	References

Quick Start

Here we give a very quick rundown of the basic links and information sources
for the project.

Basic Installation

In the Menpo Team, we strongly advocate the usage of conda for scientific
Python, as it makes installation of compiled binaries much more simple. In
particular, if you wish to use any of the related Menpo projects such as
menpofit, menpo3d or menpodetect, you will not be able to easily do so
without using conda. The installation of MenpoFit using conda is as easy as

$ conda install -c menpo menpofit

Conda is able to work out all the requirements/dependencies of MenpoFit. You
may for example notice that menpo is one of them. Please see the thorough
installation instructions for each platform on the Menpo website [http://www.menpo.org/installation/].

API Documentation

Visit API Documentation

MenpoFit is extensively documented on a per-method/class level and much
of this documentation is reflected in the API Documentation.
If any functions or classes are missing, please bring it to the attention
of the developers on Github [https://github.com/menpo/menpofit].

Notebooks

Explore the Menpo and MenpoFit Notebooks [http://www.menpo.org/notebooks.html]

For a more thorough set of examples, we provide a set of Jupyter notebooks
that demonstrate common use cases of MenpoFit. The notebooks include
extensive examples regarding all the state-of-the-art deformable models that we
provide. You may need to have a look at the Menpo notebooks in order to get
an overview of the basic functionalities required by MenpoFit.

User Group and Issues

If you wish to get in contact with the Menpo developers, you can do so
via various channels. If you have found a bug, or if any part of MenpoFit
behaves in a way you do not expect, please raise an issue on
Github [https://github.com/menpo/menpofit].

If you want to ask a theoretical question, or are having problems installing
or setting up MenpoFit, please visit the
user group [https://groups.google.com/forum/#!forum/menpo-users].

Introduction

This user guide is a general introduction to MenpoFit, aiming to provide a
bird’s eye of MenpoFit’s design. After reading this guide you should be able to
go explore MenpoFit’s extensive Notebooks and not be too surprised by what you
see.

What makes MenpoFit better?

The vast majority of existing deformable modeling software suffers from one
or more of the following important issues:

	It is released in binary closed-source format

	It does not come with training code; only pre-trained models

	It is not well-structured which makes it very difficult to tweak and alter

	It only focuses on a single method/model

MenpoFit overcomes the above issues by providing open-source training
and fitting code for multiple state-of-the-art deformable models under a
unified protocol. We strongly believe that this is the only way towards
reproducable and high-quality research.

Core Interfaces

MenpoFit is an object oriented framework for building and fitting deformable
models. It makes some basic assumptions that are common for all the
implemented methods. For example, all deformable models are trained in
multiple scales and the fitting procedure is, in most cases, iterative.
MenpoFit’s key interfaces are:

	MultiScaleNonParametricFitter - multi-scale fitting class

	MultiScaleParametricFitter - multi-scale fitting class that uses a parametric shape model

	MultiScaleNonParametricIterativeResult - multi-scale result of an iterative fitting

	MultiScaleParametricIterativeResult - multi-scale result of an iterative fitting using a parametric shape model

Deformable Models

	AAM, LucasKanadeAAMFitter, SupervisedDescentAAMFitter - Active Appearance Model builder and fitters

	ATM, LucasKanadeATMFitter - Active Template Model builder and fitter

	GenerativeAPS, GaussNewtonAPSFitter - Active Pictorial Structures builder and fitter

	CLM, GradientDescentCLMFitter - Constrained Local Model builder and fitter

	LucasKanadeFitter - Lucas-Kanade Image Alignment

	SupervisedDescentFitter - Supervised Descent Method builder and fitter

	DlibERT - Ensemble of Regression Trees builder and fitter

Building Models

All MenpoFit’s models are built in a multi-scale manner, i.e. in multiple
resolutions. In all our core classes, this is controlled using the following
three parameters:

	reference_shape (PointCloud)
	First, the size of the training images is normalized by rescaling them so
that the scale of their ground truth shapes matches the scale of this
reference shape. In case no reference shape is provided, then the mean of
the ground shapes is used. This step is essential in order to ensure
consistency between the extracted features of the images.

	diagonal (int)
	This parameter is used to rescale the reference shape so that the diagonal
of its bounding box matches the provided value. This rescaling takes place
before normalizing the training images’ size. Thus, diagonal controls the
size of the model at the highest scale.

	scales (tuple of float)
	A tuple with the scale value at each level, provided in ascending order,
i.e. from lowest to highest scale. These values are proportional to the
final resolution achieved through the reference shape normalization.

Additionally, all models have a holistic_features argument which expects
the callable that will be used for extracting features from the training
images.

Given the above assumptions, an example of a typical call for building a
deformable model using HolisticAAM is:

from menpofit.aam import HolisticAAM
from menpo.feature import fast_dsift

aam = HolisticAAM(training_images, group='PTS', reference_shape=None,
 diagonal=200, scales=(0.25, 0.5, 1.0),
 holistic_features=fast_dsift, verbose=True)

Information about any kind of model can be retrieved by:

print(aam)

The next section (Fitting) explains the basics of
fitting such a deformable model.

Fitting Models

Fitter Objects

MenpoFit has specialised classes for performing a fitting process that are
called Fitters. All Fitter objects are subclasses of
MultiScaleNonParametricFitter and MultiScaleParametricFitter.
The main difference between those two is that a MultiScaleParametricFitter
optimises over the parameters of a statistical shape model, whereas
MultiScaleNonParametricFitter optimises directly the coordinates of a shape.

Their behaviour can differ depending on the deformable model. For example,
a Lucas-Kanade AAM fitter (LucasKanadeAAMFitter) assumes that you
have trained an AAM model (assume the aam we trained in the
Building section) and can be created as:

from menpofit.aam import LucasKanadeAAMFitter, WibergInverseCompositional

fitter = LucasKanadeAAMFitter(aam,
 lk_algorithm_cls=WibergInverseCompositional,
 n_shape=[5, 10, 15], n_appearance=150)

The constructor of the Fitter will set the active shape and appearance
components based on n_shape and n_appearance respectively, and will also
perform all the necessary pre-computations based on the selected algorithm.

However, there are deformable models that are directly defined through a
Fitter object, which is responsible for training the model as well.
SupervisedDescentFitter is a good example. The reason for that is that
the fitting process is utilised during the building procedure, thus the
functionality of a Fitter is required. Such models can be built as:

from menpofit.sdm import SupervisedDescentFitter, NonParametricNewton

fitter = SupervisedDescentFitter(training_images, group='PTS',
 sd_algorithm_cls=NonParametricNewton,
 verbose=True)

Information about a Fitter can be retrieved by:

print(fitter)

Fitting Methods

All the deformable models that are currently implemented in MenpoFit, which
are the state-of-the-art approaches in current literature, aim to find a
local optimum of the cost function that they try to optimise, given an
initialisation. The initialisation can be seen as an initial estimation of
the target shape. MenpoFit’s Fitter objects provide two functions for fitting
the model to an image:

result = fitter.fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None,
 return_costs=False, **kwargs)

or

result = fitter.fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None,
 return_costs=False, **kwargs)

They only differ on the type of initialisation. fit_from_shape expects a
PointCloud as the initial_shape. On the other hand, the bounding_box
argument of fit_from_bb is a PointDirectedGraph of 4 vertices that
represents the initial bounding box. The bounding box is used in order to
align the model’s reference shape and use the resulting PointCloud as the
initial shape. Such a bounding box can be retrieved using the detection
methods of menpodetect. The rest of the options are:

	max_iters (int or list of int)
	Defines the maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int, then it
specifies the maximum number of iterations per scale. Note that this does
not apply on all deformable models. For example, it can control the number
of iterations of a Lucas-Kanade optimisation algorithm, but it does not
affect the fitting of a cascaded-regression method (e.g. SDM) which has a
predefined number of cascades (iterations).

	gt_shape (PointCloud or None)
	The ground truth shape associated to the image. This is only useful to
compute the final fitting error. It is not used, of course, at any
internal stage of the optimisation.

	return_costs (bool)
	If True, then the cost function values will be computed during the
fitting procedure. Then these cost values will be assigned to the returned
fitting_result. Note that the costs computation increases the computational
cost of the fitting. The additional computation cost depends on the fitting
method. Thus, this option should only be used for research purposes. Finally,
this argument does not apply to all deformable models.

	kwargs (dict)
	Additional keyword arguments that can be passed to specific models.

The next section (Result) presents the basics of the
fitting result.

Fitting Result

Objects

The fitting methods of the Fitters presented in the previous section return
a result object. MenpoFit has three basic fitting result objects:

	Result : Basic fitting result object that holds the final shape, and
optionally, the initial shape, ground truth shape and the image.

	MultiScaleNonParametricIterativeResult : The result of a multi-scale
iterative fitting procedure. Apart from the final shape, it also stores the
shapes acquired at each fitting iteration.

	MultiScaleParametricIterativeResult : The same as MultiScaleNonParametricIterativeResult
with the difference that the optimisation was performed over the parameters
of a statistical parametric shape model. Thus, apart from the actual
shapes, it also stores the shape parameters acquired per iteration. Note that
in this case, the initial shape that was provided by the user gets reconstructed
using the shape model, i.e. it first gets projected in order to get the initial
estimation of the shape parameters, and then gets reconstructed with those. The
resulting shape is then used as initialisation for the iterative fitting process.

Attributes

The above result objects can provide some very useful information regarding
the fitting procedure. For example, the various shapes can be retrieved as:

	result.final_shape
	The final shape of the fitting procedure.

	result.initial_shape
	The initial shape of the fitting procedure that was provided by the user.

	result.reconstructed_initial_shape
	The reconstruction of the initial shape that was used to initialise the fitting
procedure. It only applies for MultiScaleParametricIterativeResult.

	result.image
	The image on which the fitting procedure was applied.

	result.gt_shape
	The ground truth shape associated to the image.

	result.shapes
	The list of shapes acquired at each fitting iteration. It only applies on
MultiScaleNonParametricIterativeResult and
MultiScaleParametricIterativeResult.

	result.costs()
	The cost values per iteration, if they were computed during fitting.

Also, a result can compute some error metrics, in case the gt_shape of the
image exists:

	result.final_error()
	The final fitting error.

	result.initial_error()
	The initial fitting error.

	result.errors()
	The list of errors acquired at each fitting iteration. It only applies on
MultiScaleNonParametricIterativeResult and
MultiScaleParametricIterativeResult.

Visualizing Objects

In Menpo, we take an opinionated stance that visualization is a key part of
generating research on deformable models. Therefore, we tried to make the
mental overhead of visualizing objects as low as possible.

We also took a strong step towards simple visualization by integrating some of
our objects with visualization widgets for the Jupyter notebook. Remember that
our widgets live on their own repository, called menpowidgets.

Visualizing Models

Without further ado, a quick example of visualising the AAM trained in the
Building section with an interactive widget:

%matplotlib inline # This is only needed if viewing in a Jupyter notebook
aam.view_aam_widget()

[image: ../_images/aam.gif]
Figure 1: Example of visualizing an AAM using an interactive widget.

One can visualize the only the multi-scale shape models:

%matplotlib inline
aam.view_shape_models_widget()

or the appearance models:

%matplotlib inline
import menpo.io as mio
aam.view_appearance_models_widget()

The same visualization widgets can be found in other models, such as ATM, CLM
etc.

Visualizing Fitting Result

The fitting result objects shown in Building can be easily
visualized. Specifically, the initial and final shapes can be rendered as:

%matplotlib inline
result.view(render_initial_shape=True)

Similarly, the shapes acquired at each iteration can be visualized as:

%matplotlib inline
fr.view_iterations()

and the corresponding errors as:

%matplotlib inline
fr.plot_errors()

Finally, a fitting result can also be analysed through an interactive widget as:

%matplotlib inline
fr.view_widget()

[image: ../_images/result.gif]
Figure 2: Example of visualizing the iterations of a fitting
procedure using an interactive widget.

References

This is an indicative list of papers relevant to the methods that are
implemented in MenpoFit. They are listed in alphabetical order of the first
author’s surname.

	J. Alabort-i-Medina, and S. Zafeiriou. “A Unified Framework for Compositional
Fitting of Active Appearance Models”, arXiv:1601.00199.

	J. Alabort-i-Medina, and S. Zafeiriou. “Bayesian Active Appearance Models”,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

	J. Alabort-i-Medina, and S. Zafeiriou. “Unifying Holistic and Parts-Based
Deformable Model Fitting”, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

	E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and S. Zafeiriou. “Feature-based
Lucas-Kanade and Active Appearance Models”, IEEE Transactions on Image
Processing, vol. 24, no. 9, pp. 2617-2632, 2015.

	E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and S. Zafeiriou. “HOG
Active Appearance Models”, IEEE International Conference on Image
Processing (ICIP), 2014.

	E. Antonakos, J. Alabort-i-Medina, and S. Zafeiriou. “Active Pictorial
Structures”, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

	A.B. Ashraf, S. Lucey, and T. Chen. “Fast Image Alignment in the Fourier
Domain”, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2010.

	A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. “Robust discriminative
response map fitting with constrained local models”, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

	S. Baker, and I. Matthews. “Lucas-Kanade 20 years on: A unifying framework”,
International Journal of Computer Vision, vol. 56, no. 3, pp. 221-255, 2004.

	P.N. Belhumeur, D.W. Jacobs, D.J. Kriegman, and N. Kumar. “Localizing parts
of faces using a consensus of exemplars”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 12, pp. 2930-2940, 2013.

	D.S. Bolme, J.R. Beveridge, B.A. Draper, and Y.M. Lui. “Visual Object
Tracking using Adaptive Correlation Filters”, IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2010.

	T.F. Cootes, G.J. Edwards, and C.J. Taylor. “Active Appearance Models”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
no. 6, pp. 681–685, 2001.

	T.F. Cootes, and C.J. Taylor. “Active shape models-‘smart snakes’”,
British Machine Vision Conference (BMVC), 1992.

	T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. “Active Shape
Models - their training and application”, Computer Vision and Image
Understanding, vol. 61, no. 1, pp. 38-59, 1995.

	D. Cristinacce, and T.F. Cootes. “Feature Detection and Tracking with
Constrained Local Models”, British Machine Vision Conference (BMVC), 2006.

	G.D. Evangelidis, and E.Z. Psarakis. “Parametric Image Alignment Using
Enhanced Correlation Coefficient Maximization”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1858-1865, 2008.

	R. Gross, I. Matthews, and S. Baker. “Generic vs. person specific Active
Appearance Models”, Image and Vision Computing, vol. 23, no. 12, pp.
1080-1093, 2005.

	V. Kazemi, and J. Sullivan. “One millisecond face alignment with an `
`ensemble of regression trees”, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

	B.D. Lucas, and T. Kanade, “An iterative image registration technique
with an application to stereo vision”, International Joint Conference on
Artificial Intelligence, 1981.

	I. Matthews, and S. Baker. “Active Appearance Models Revisited”,
International Journal of Computer Vision, 60(2): 135-164, 2004.

	G. Papandreou, and P. Maragos. “Adaptive and constrained algorithms for `
`inverse compositional active appearance model fitting”, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2008.

	D. Ross, J. Lim, R.S. Lin, and M.H. Yang. “Incremental Learning for
Robust Visual Tracking”. International Journal on Computer Vision,
vol. 77, no. 1-3, pp. 125-141, 2007.

	J.M. Saragih, S. Lucey, and J.F. Cohn. “Deformable model fitting by
regularized landmark mean-shift”, International Journal of Computer Vision,
vol. 91, no. 2, pp. 200–215, 2011.

	J.M. Saragih, and R. Goecke. “Learning AAM fitting through simulation”,
Pattern Recognition, vol. 42, no. 11, pp. 2628–2636, 2009.

	G. Tzimiropoulos, J. Alabort-i-Medina, S. Zafeiriou, and M. Pantic. “Active
Orientation Models for Face Alignment in-the-wild”, IEEE Transactions on
Information Forensics and Security, Special Issue on Facial Biometrics
in-the-wild, vol. 9, no. 12, pp. 2024-2034, 2014.

	G. Tzimiropoulos, and M. Pantic. “Gauss-Newton Deformable Part Models for
Face Alignment In-the-Wild”, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

	G. Tzimiropoulos, J. Alabort-i-Medina, S. Zafeiriou, and M. Pantic. “Generic
Active Appearance Models Revisited”, Asian Conference on Computer Vision,
Springer, 2012.

	G. Tzimiropoulos, M. Pantic. “Optimization problems for fast AAM fitting
in-the-wild”, IEEE International Conference on Computer Vision (ICCV), 2013.

	G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “Robust and efficient
parametric face alignment”, IEEE International Conference on Computer
Vision (ICCV), 2011.

	G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “Subspace Learning from Image
Gradient Orientations”, IEEE Transactions on Pattern Analysis and
Machine Intelligence. vol. 34, no. 12, pp. 2454-2466, 2012.

	X. Xiong, and F. De la Torre. “Supervised descent method and its applications
to face alignment”, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

The MenpoFit API

This section attempts to provide a simple browsing experience for the MenpoFit
documentation. In MenpoFit, we use legible docstrings, and therefore, all
documentation should be easily accessible in any sensible IDE (or IPython)
via tab completion. However, this section should make most of the core
classes available for viewing online.

Deformable Models

	menpofit.aam

	menpofit.aps

	menpofit.atm

	menpofit.clm

	menpofit.unified_aam_clm

	menpofit.dlib

	menpofit.lk

	menpofit.sdm

Internal API

	menpofit.builder

	menpofit.checks

	menpofit.differentiable

	menpofit.error

	menpofit.fitter

	menpofit.io

	menpofit.math

	menpofit.modelinstance

	menpofit.result

	menpofit.transform

	menpofit.visualize

menpofit.aam

Active Appearance Model

AAM is a generative model that consists of a statistical parametric model of
the shape and the appearance of an object. MenpoFit has several AAMs which
differ in the manner that they compute the warp (thus represent the
appearance features).

	AAM

	HolisticAAM

	MaskedAAM

	LinearAAM

	LinearMaskedAAM

	PatchAAM

Fitters

An AAM can be optimised either in a gradient descent manner (Lucas-Kanade) or
using cascaded regression (Supervised Descent).

	LucasKanadeAAMFitter

	SupervisedDescentAAMFitter

Lucas-Kanade Optimisation Algorithms

	AlternatingForwardCompositional

	AlternatingInverseCompositional

	ModifiedAlternatingForwardCompositional

	ModifiedAlternatingInverseCompositional

	ProjectOutForwardCompositional

	ProjectOutInverseCompositional

	SimultaneousForwardCompositional

	SimultaneousInverseCompositional

	WibergForwardCompositional

	WibergInverseCompositional

Supervised Descent Optimisation Algorithms

	AppearanceWeightsNewton

	AppearanceWeightsGaussNewton

	MeanTemplateNewton

	MeanTemplateGaussNewton

	ProjectOutNewton

	ProjectOutGaussNewton

Fitting Result

	AAMResult

	AAMAlgorithmResult

Pre-Trained Model

	load_balanced_frontal_face_fitter

AAM

	
class menpofit.aam.base.AAM(images, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), transform=<class 'menpofit.transform.piecewiseaffine.DifferentiablePiecewiseAffine'>, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, max_shape_components=None, max_appearance_components=None, verbose=False, batch_size=None)

	Bases: object

Class for training a multi-scale holistic Active Appearance Model. Please
see the references for a basic list of relevant papers.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the AAM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	transform (subclass of DL and DX, optional) – A differential warp transform object, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	max_appearance_components (int, float, list of those or None, optional) – The number of appearance components to keep. If int, then it sets the
exact number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should define a value
per scale. If a single number, then this will be applied to all
scales. If None, then all the components are kept. Note that the
unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

References

	1

	J. Alabort-i-Medina, and S. Zafeiriou. “A Unified Framework for
Compositional Fitting of Active Appearance Models”, arXiv:1601.00199.

	2

	T.F. Cootes, G.J. Edwards, and C.J. Taylor. “Active Appearance
Models”, IEEE Transactions on Pattern Analysis & Machine Intelligence
6 (2001): 681-685.

	3

	I. Matthews, and S. Baker. “Active Appearance Models Revisited”,
International Journal of Computer Vision, 60(2): 135-164, 2004.

	4

	G. Papandreou, and P. Maragos. “Adaptive and constrained algorithms
for inverse compositional Active Appearance Model fitting”, IEEE
Proceedings of International Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1-8, June 2008.

	5

	E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and S.
Zafeiriou. “Feature-Based Lucas-Kanade and Active Appearance Models”,
IEEE Transactions on Image Processing, 24(9): 2617-2632, 2015.

	
appearance_reconstructions(appearance_parameters, n_iters_per_scale)

	Method that generates the appearance reconstructions given a set of
appearance parameters. This is to be combined with a AAMResult
object, in order to generate the appearance reconstructions of a
fitting procedure.

	Parameters

	
	appearance_parameters (list of (n_params,) ndarray) – A set of appearance parameters per fitting iteration. It can be
retrieved as a property of an AAMResult object.

	n_iters_per_scale (list of int) – The number of iterations per scale. This is necessary in order to
figure out which appearance parameters correspond to the model of
each scale. It can be retrieved as a property of a AAMResult
object.

	Returns

	appearance_reconstructions (list of menpo.image.Image) – List of the appearance reconstructions that correspond to the
provided parameters.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface. It
only applies in case you wish to fit the AAM with a Lucas-Kanade
algorithm (i.e. LucasKanadeAAMFitter).

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(images, group=None, shape_forgetting_factor=1.0, appearance_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained AAM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None
and the images only have a single landmark group, then that is the
one that will be used. Note that all the training images need to
have the specified landmark group.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	appearance_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the appearance model. If 1.0,
all samples are weighted equally and, hence, the result is the
exact same as performing batch PCA on the concatenated list of
old and new simples. If <1.0, more emphasis is put on the new
samples.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, appearance_weights=None, scale_index=-1)

	Generates a novel AAM instance given a set of shape and appearance
weights. If no weights are provided, then the mean AAM instance is
returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	appearance_weights ((n_weights,) ndarray or list or None, optional) – The weights of the appearance model that will be used to create a
novel appearance instance. If None, the weights are assumed
to be zero, thus the mean appearance is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the AAM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
view_aam_widget(n_shape_parameters=5, n_appearance_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the AAM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	n_appearance_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_appearance_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the appearance models of the AAM object using an
interactive widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the AAM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

HolisticAAM

	
menpofit.aam.HolisticAAM

	alias of AAM

MaskedAAM

	
class menpofit.aam.MaskedAAM(images, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, max_shape_components=None, max_appearance_components=None, verbose=False, batch_size=None)

	Bases: AAM

Class for training a multi-scale patch-based Masked Active Appearance Model.
The appearance of this model is formulated by simply masking an image
with a patch-based mask.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the AAM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	patch_shape ((int, int), optional) – The size of the patches of the mask that is used to sample the
appearance vectors.

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	max_appearance_components (int, float, list of those or None, optional) – The number of appearance components to keep. If int, then it sets the
exact number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should define a value
per scale. If a single number, then this will be applied to all
scales. If None, then all the components are kept. Note that the
unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
appearance_reconstructions(appearance_parameters, n_iters_per_scale)

	Method that generates the appearance reconstructions given a set of
appearance parameters. This is to be combined with a AAMResult
object, in order to generate the appearance reconstructions of a
fitting procedure.

	Parameters

	
	appearance_parameters (list of (n_params,) ndarray) – A set of appearance parameters per fitting iteration. It can be
retrieved as a property of an AAMResult object.

	n_iters_per_scale (list of int) – The number of iterations per scale. This is necessary in order to
figure out which appearance parameters correspond to the model of
each scale. It can be retrieved as a property of a AAMResult
object.

	Returns

	appearance_reconstructions (list of menpo.image.Image) – List of the appearance reconstructions that correspond to the
provided parameters.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface. It
only applies in case you wish to fit the AAM with a Lucas-Kanade
algorithm (i.e. LucasKanadeAAMFitter).

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(images, group=None, shape_forgetting_factor=1.0, appearance_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained AAM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None
and the images only have a single landmark group, then that is the
one that will be used. Note that all the training images need to
have the specified landmark group.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	appearance_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the appearance model. If 1.0,
all samples are weighted equally and, hence, the result is the
exact same as performing batch PCA on the concatenated list of
old and new simples. If <1.0, more emphasis is put on the new
samples.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, appearance_weights=None, scale_index=-1)

	Generates a novel AAM instance given a set of shape and appearance
weights. If no weights are provided, then the mean AAM instance is
returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	appearance_weights ((n_weights,) ndarray or list or None, optional) – The weights of the appearance model that will be used to create a
novel appearance instance. If None, the weights are assumed
to be zero, thus the mean appearance is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the AAM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
view_aam_widget(n_shape_parameters=5, n_appearance_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the AAM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	n_appearance_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_appearance_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the appearance models of the AAM object using an
interactive widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the AAM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

LinearAAM

	
class menpofit.aam.LinearAAM(images, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), transform=<class 'menpofit.transform.thinsplatesplines.DifferentiableThinPlateSplines'>, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, max_shape_components=None, max_appearance_components=None, verbose=False, batch_size=None)

	Bases: AAM

Class for training a multi-scale Linear Active Appearance Model.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the AAM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	transform (subclass of DL and DX, optional) – A differential warp transform object, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	max_appearance_components (int, float, list of those or None, optional) – The number of appearance components to keep. If int, then it sets the
exact number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should define a value
per scale. If a single number, then this will be applied to all
scales. If None, then all the components are kept. Note that the
unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
appearance_reconstructions(appearance_parameters, n_iters_per_scale)

	Method that generates the appearance reconstructions given a set of
appearance parameters. This is to be combined with a AAMResult
object, in order to generate the appearance reconstructions of a
fitting procedure.

	Parameters

	
	appearance_parameters (list of (n_params,) ndarray) – A set of appearance parameters per fitting iteration. It can be
retrieved as a property of an AAMResult object.

	n_iters_per_scale (list of int) – The number of iterations per scale. This is necessary in order to
figure out which appearance parameters correspond to the model of
each scale. It can be retrieved as a property of a AAMResult
object.

	Returns

	appearance_reconstructions (list of menpo.image.Image) – List of the appearance reconstructions that correspond to the
provided parameters.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface. It
only applies in case you wish to fit the AAM with a Lucas-Kanade
algorithm (i.e. LucasKanadeAAMFitter).

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(images, group=None, shape_forgetting_factor=1.0, appearance_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained AAM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None
and the images only have a single landmark group, then that is the
one that will be used. Note that all the training images need to
have the specified landmark group.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	appearance_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the appearance model. If 1.0,
all samples are weighted equally and, hence, the result is the
exact same as performing batch PCA on the concatenated list of
old and new simples. If <1.0, more emphasis is put on the new
samples.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, appearance_weights=None, scale_index=-1)

	Generates a novel AAM instance given a set of shape and appearance
weights. If no weights are provided, then the mean AAM instance is
returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	appearance_weights ((n_weights,) ndarray or list or None, optional) – The weights of the appearance model that will be used to create a
novel appearance instance. If None, the weights are assumed
to be zero, thus the mean appearance is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the AAM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
view_aam_widget(n_shape_parameters=5, n_appearance_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the AAM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	n_appearance_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_appearance_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the appearance models of the AAM object using an
interactive widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the AAM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

LinearMaskedAAM

	
class menpofit.aam.LinearMaskedAAM(images, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, max_shape_components=None, max_appearance_components=None, verbose=False, batch_size=None)

	Bases: AAM

Class for training a multi-scale Linear Masked Active Appearance Model.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the AAM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	patch_shape ((int, int), optional) – The size of the patches of the mask that is used to sample the
appearance vectors.

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	max_appearance_components (int, float, list of those or None, optional) – The number of appearance components to keep. If int, then it sets the
exact number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should define a value
per scale. If a single number, then this will be applied to all
scales. If None, then all the components are kept. Note that the
unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
appearance_reconstructions(appearance_parameters, n_iters_per_scale)

	Method that generates the appearance reconstructions given a set of
appearance parameters. This is to be combined with a AAMResult
object, in order to generate the appearance reconstructions of a
fitting procedure.

	Parameters

	
	appearance_parameters (list of (n_params,) ndarray) – A set of appearance parameters per fitting iteration. It can be
retrieved as a property of an AAMResult object.

	n_iters_per_scale (list of int) – The number of iterations per scale. This is necessary in order to
figure out which appearance parameters correspond to the model of
each scale. It can be retrieved as a property of a AAMResult
object.

	Returns

	appearance_reconstructions (list of menpo.image.Image) – List of the appearance reconstructions that correspond to the
provided parameters.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface. It
only applies in case you wish to fit the AAM with a Lucas-Kanade
algorithm (i.e. LucasKanadeAAMFitter).

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(images, group=None, shape_forgetting_factor=1.0, appearance_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained AAM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None
and the images only have a single landmark group, then that is the
one that will be used. Note that all the training images need to
have the specified landmark group.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	appearance_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the appearance model. If 1.0,
all samples are weighted equally and, hence, the result is the
exact same as performing batch PCA on the concatenated list of
old and new simples. If <1.0, more emphasis is put on the new
samples.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, appearance_weights=None, scale_index=-1)

	Generates a novel AAM instance given a set of shape and appearance
weights. If no weights are provided, then the mean AAM instance is
returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	appearance_weights ((n_weights,) ndarray or list or None, optional) – The weights of the appearance model that will be used to create a
novel appearance instance. If None, the weights are assumed
to be zero, thus the mean appearance is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the AAM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
view_aam_widget(n_shape_parameters=5, n_appearance_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the AAM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	n_appearance_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_appearance_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the appearance models of the AAM object using an
interactive widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the AAM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

PatchAAM

	
class menpofit.aam.PatchAAM(images, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), patch_normalisation=<function no_op>, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, max_shape_components=None, max_appearance_components=None, verbose=False, batch_size=None)

	Bases: AAM

Class for training a multi-scale Patch-Based Active Appearance Model. The
appearance of this model is formulated by simply sampling patches around
the image’s landmarks.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the AAM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches to be extracted. If a list is provided,
then it defines a patch shape per scale.

	patch_normalisation (list of callable or a single callable, optional) – The normalisation function to be applied on the extracted patches. If
list, then it must have length equal to the number of scales. If a
single patch normalization callable, then this is the one applied to
all scales.

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	max_appearance_components (int, float, list of those or None, optional) – The number of appearance components to keep. If int, then it sets the
exact number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should define a value
per scale. If a single number, then this will be applied to all
scales. If None, then all the components are kept. Note that the
unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
appearance_reconstructions(appearance_parameters, n_iters_per_scale)

	Method that generates the appearance reconstructions given a set of
appearance parameters. This is to be combined with a AAMResult
object, in order to generate the appearance reconstructions of a
fitting procedure.

	Parameters

	
	appearance_parameters (list of ndarray) – A set of appearance parameters per fitting iteration. It can be
retrieved as a property of a AAMResult object.

	n_iters_per_scale (list of int) – The number of iterations per scale. This is necessary in order to
figure out which appearance parameters correspond to the model of
each scale. It can be retrieved as a property of a AAMResult
object.

	Returns

	appearance_reconstructions (list of ndarray) – List of the appearance reconstructions that correspond to the
provided parameters.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface. It
only applies in case you wish to fit the AAM with a Lucas-Kanade
algorithm (i.e. LucasKanadeAAMFitter).

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(images, group=None, shape_forgetting_factor=1.0, appearance_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained AAM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None
and the images only have a single landmark group, then that is the
one that will be used. Note that all the training images need to
have the specified landmark group.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	appearance_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the appearance model. If 1.0,
all samples are weighted equally and, hence, the result is the
exact same as performing batch PCA on the concatenated list of
old and new simples. If <1.0, more emphasis is put on the new
samples.

	verbose (bool, optional) – If True, then the progress of building the AAM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, appearance_weights=None, scale_index=-1)

	Generates a novel AAM instance given a set of shape and appearance
weights. If no weights are provided, then the mean AAM instance is
returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	appearance_weights ((n_weights,) ndarray or list or None, optional) – The weights of the appearance model that will be used to create a
novel appearance instance. If None, the weights are assumed
to be zero, thus the mean appearance is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the AAM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
view_aam_widget(n_shape_parameters=5, n_appearance_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the AAM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	n_appearance_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_appearance_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the appearance models of the AAM object using an
interactive widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the AAM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

LucasKanadeAAMFitter

	
class menpofit.aam.LucasKanadeAAMFitter(aam, lk_algorithm_cls=<class 'menpofit.aam.algorithm.lk.WibergInverseCompositional'>, n_shape=None, n_appearance=None, sampling=None)

	Bases: AAMFitter

Class for defining an AAM fitter using the Lucas-Kanade optimisation.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step takes place at each scale
and it is not considered as an iteration, thus it is not counted
for the provided max_iters.

	Parameters

	
	aam (AAM or subclass) – The trained AAM model.

	lk_algorithm_cls (class, optional) – The Lukas-Kanade optimisation algorithm that will get applied. The
possible algorithms are:

	Class

	Method

	AlternatingForwardCompositional

	Alternating

	AlternatingInverseCompositional

	

	ModifiedAlternatingForwardCompositional

	Modified Alternating

	ModifiedAlternatingInverseCompositional

	

	ProjectOutForwardCompositional

	Project-Out

	ProjectOutInverseCompositional

	

	SimultaneousForwardCompositional

	Simultaneous

	SimultaneousInverseCompositional

	

	WibergForwardCompositional

	Wiberg

	WibergInverseCompositional

	

	n_shape (int or float or list of those or None, optional) – The number of shape components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_shape_components
during training.

	n_appearance (int or float or list of those or None, optional) – The number of appearance components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_appearance_components
during training.

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it defines the
sub-sampling step of the sampling mask. If ndarray, then it
explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	
appearance_reconstructions(appearance_parameters, n_iters_per_scale)

	Method that generates the appearance reconstructions given a set of
appearance parameters. This is to be combined with a AAMResult
object, in order to generate the appearance reconstructions of a
fitting procedure.

	Parameters

	
	appearance_parameters (list of (n_params,) ndarray) – A set of appearance parameters per fitting iteration. It can be
retrieved as a property of an AAMResult object.

	n_iters_per_scale (list of int) – The number of iterations per scale. This is necessary in order to
figure out which appearance parameters correspond to the model of
each scale. It can be retrieved as a property of a AAMResult
object.

	Returns

	appearance_reconstructions (list of menpo.image.Image) – List of the appearance reconstructions that correspond to the
provided parameters.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within an AAMResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

	
property aam

	The trained AAM model.

	Type

	AAM or subclass

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

SupervisedDescentAAMFitter

	
class menpofit.aam.SupervisedDescentAAMFitter(images, aam, group=None, bounding_box_group_glob=None, n_shape=None, n_appearance=None, sampling=None, sd_algorithm_cls=<class 'menpofit.aam.algorithm.sd.ProjectOutNewton'>, n_iterations=6, n_perturbations=30, perturb_from_gt_bounding_box=<function noisy_shape_from_bounding_box>, batch_size=None, verbose=False)

	Bases: SupervisedDescentFitter

Class for training a multi-scale cascaded-regression Supervised Descent AAM
fitter.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	aam (AAM or subclass) – The trained AAM model.

	group (str or None, optional) – The landmark group that will be used to train the fitter. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	bounding_box_group_glob (glob or None, optional) – Glob that defines the bounding boxes to be used for training. If
None, then the bounding boxes of the ground truth shapes are used.

	n_shape (int or float or list of those or None, optional) – The number of shape components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_shape_components
during training.

	n_appearance (int or float or list of those or None, optional) – The number of appearance components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_appearance_components
during training.

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it defines the
sub-sampling step of the sampling mask. If ndarray, then it explicitly
defines the sampling mask. If None, then no sub-sampling is applied.

	sd_algorithm_cls (class, optional) – The Supervised Descent algorithm to be used. The possible algorithms
are:

	Class

	Features

	Regression

	MeanTemplateNewton

	Mean Template

	IRLRegression

	MeanTemplateGaussNewton

	
	IIRLRegression

	ProjectOutNewton

	Project-Out

	IRLRegression

	ProjectOutGaussNewton

	
	IIRLRegression

	AppearanceWeightsNewton

	App. Weights

	IRLRegression

	AppearanceWeightsGaussNewton

	
	IIRLRegression

	n_iterations (int or list of int, optional) – The number of iterations (cascades) of each level. If list, it must
specify a value per scale. If int, then it defines the total number of
iterations (cascades) over all scales.

	n_perturbations (int or None, optional) – The number of perturbations to be generated from the provided bounding
boxes.

	perturb_from_gt_bounding_box (callable, optional) – The function that will be used to generate the perturbations.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	verbose (bool, optional) – If True, then the progress of training will be printed.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
increment(images, group=None, bounding_box_group_glob=None, verbose=False, batch_size=None)

	Method to increment the trained SDM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that corresponds to the ground truth shape of
each image. If None and the images only have a single
landmark group, then that is the one that will be used. Note that
all the training images need to have the specified landmark group.

	bounding_box_group_glob (glob or None, optional) – Glob that defines the bounding boxes to be used for training. If
None, then the bounding boxes of the ground truth shapes are
used.

	verbose (bool, optional) – If True, then the progress of training will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within a
MultiScaleParametricIterativeResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

AlternatingForwardCompositional

	
class menpofit.aam.AlternatingForwardCompositional(aam_interface, eps=1e-05)

	Bases: Alternating

Alternating Forward Compositional (AFC) Gauss-Newton algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

AlternatingInverseCompositional

	
class menpofit.aam.AlternatingInverseCompositional(aam_interface, eps=1e-05)

	Bases: Alternating

Alternating Inverse Compositional (AIC) Gauss-Newton algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

ModifiedAlternatingForwardCompositional

	
class menpofit.aam.ModifiedAlternatingForwardCompositional(aam_interface, eps=1e-05)

	Bases: ModifiedAlternating

Modified Alternating Forward Compositional (MAFC) Gauss-Newton algorithm

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

ModifiedAlternatingInverseCompositional

	
class menpofit.aam.ModifiedAlternatingInverseCompositional(aam_interface, eps=1e-05)

	Bases: ModifiedAlternating

Modified Alternating Inverse Compositional (MAIC) Gauss-Newton algorithm

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

ProjectOutForwardCompositional

	
class menpofit.aam.ProjectOutForwardCompositional(aam_interface, eps=1e-05)

	Bases: ProjectOut

Project-out Forward Compositional (POFC) Gauss-Newton algorithm.

	
project_out(J)

	Projects-out the appearance subspace from a given vector or matrix.

	Type

	ndarray

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

ProjectOutInverseCompositional

	
class menpofit.aam.ProjectOutInverseCompositional(aam_interface, eps=1e-05)

	Bases: ProjectOut

Project-out Inverse Compositional (POIC) Gauss-Newton algorithm.

	
project_out(J)

	Projects-out the appearance subspace from a given vector or matrix.

	Type

	ndarray

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

SimultaneousForwardCompositional

	
class menpofit.aam.SimultaneousForwardCompositional(aam_interface, eps=1e-05)

	Bases: Simultaneous

Simultaneous Forward Compositional (SFC) Gauss-Newton algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

SimultaneousInverseCompositional

	
class menpofit.aam.SimultaneousInverseCompositional(aam_interface, eps=1e-05)

	Bases: Simultaneous

Simultaneous Inverse Compositional (SIC) Gauss-Newton algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

WibergForwardCompositional

	
class menpofit.aam.WibergForwardCompositional(aam_interface, eps=1e-05)

	Bases: Wiberg

Wiberg Forward Compositional (WFC) Gauss-Newton algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

WibergInverseCompositional

	
class menpofit.aam.WibergInverseCompositional(aam_interface, eps=1e-05)

	Bases: Wiberg

Wiberg Inverse Compositional (WIC) Gauss-Newton algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property template

	Returns the template of the AAM (usually the mean of the appearance
model).

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

AppearanceWeightsNewton

	
class menpofit.aam.AppearanceWeightsNewton(aam_interface, n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: AppearanceWeights

Class for training a cascaded-regression Newton algorithm using Incremental
Regularized Linear Regression (IRLRegression) given a trained AAM
model. The algorithm uses the projection weights of the appearance
vectors as features in the regression.

	Parameters

	
	aam_interface (The AAM interface class from menpofit.aam.algorithm.lk.) – Existing interfaces include:

	’LucasKanadeStandardInterface’

	Suitable for holistic AAMs

	’LucasKanadeLinearInterface’

	Suitable for linear AAMs

	’LucasKanadePatchInterface’

	Suitable for patch-based AAMs

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
project(J)

	Projects a given vector or matrix onto the appearance subspace.

	Type

	ndarray

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

AppearanceWeightsGaussNewton

	
class menpofit.aam.AppearanceWeightsGaussNewton(aam_interface, n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, alpha=0, alpha2=0, bias=True)

	Bases: AppearanceWeights

Class for training a cascaded-regression Gauss-Newton algorithm using
Indirect Incremental Regularized Linear Regression (IIRLRegression)
given a trained AAM model. The algorithm uses the projection weights of
the appearance vectors as features in the regression.

	Parameters

	
	aam_interface (The AAM interface class from menpofit.aam.algorithm.lk.) – Existing interfaces include:

	’LucasKanadeStandardInterface’

	Suitable for holistic AAMs

	’LucasKanadeLinearInterface’

	Suitable for linear AAMs

	’LucasKanadePatchInterface’

	Suitable for patch-based AAMs

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	alpha2 (float, optional) – The regularization parameter of the Hessian matrix.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
project(J)

	Projects a given vector or matrix onto the appearance subspace.

	Type

	ndarray

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

MeanTemplateNewton

	
class menpofit.aam.MeanTemplateNewton(aam_interface, n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: MeanTemplate

Class for training a cascaded-regression Newton algorithm using Incremental
Regularized Linear Regression (IRLRegression) given a trained AAM
model. The algorithm uses the centered appearance vectors as features in
the regression.

	Parameters

	
	aam_interface (The AAM interface class from menpofit.aam.algorithm.lk.) – Existing interfaces include:

	’LucasKanadeStandardInterface’

	Suitable for holistic AAMs

	’LucasKanadeLinearInterface’

	Suitable for linear AAMs

	’LucasKanadePatchInterface’

	Suitable for patch-based AAMs

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

MeanTemplateGaussNewton

	
class menpofit.aam.MeanTemplateGaussNewton(aam_interface, n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, alpha=0, alpha2=0, bias=True)

	Bases: MeanTemplate

Class for training a cascaded-regression Gauss-Newton algorithm using
Indirect Incremental Regularized Linear Regression (IIRLRegression)
given a trained AAM model. The algorithm uses the centered appearance
vectors as features in the regression.

	Parameters

	
	aam_interface (The AAM interface class from menpofit.aam.algorithm.lk.) – Existing interfaces include:

	’LucasKanadeStandardInterface’

	Suitable for holistic AAMs

	’LucasKanadeLinearInterface’

	Suitable for linear AAMs

	’LucasKanadePatchInterface’

	Suitable for patch-based AAMs

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	alpha2 (float, optional) – The regularization parameter of the Hessian matrix.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

ProjectOutNewton

	
class menpofit.aam.ProjectOutNewton(aam_interface, n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: ProjectOut

Class for training a cascaded-regression Newton algorithm using Incremental
Regularized Linear Regression (IRLRegression) given a trained AAM
model. The algorithm uses the projected-out appearance vectors as
features in the regression.

	Parameters

	
	aam_interface (The AAM interface class from menpofit.aam.algorithm.lk.) – Existing interfaces include:

	Class

	AAM

	’LucasKanadeStandardInterface’

	Suitable for holistic AAMs

	’LucasKanadeLinearInterface’

	Suitable for linear AAMs

	’LucasKanadePatchInterface’

	Suitable for patch-based AAMs

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
project_out(J)

	Projects-out the appearance subspace from a given vector or matrix.

	Type

	ndarray

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

ProjectOutGaussNewton

	
class menpofit.aam.ProjectOutGaussNewton(aam_interface, n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, alpha=0, alpha2=0, bias=True)

	Bases: ProjectOut

Class for training a cascaded-regression Gauss-Newton algorithm using
Indirect Incremental Regularized Linear Regression (IIRLRegression)
given a trained AAM model. The algorithm uses the projected-out
appearance vectors as features in the regression.

	Parameters

	
	aam_interface (The AAM interface class from menpofit.aam.algorithm.lk.) – Existing interfaces include:

	’LucasKanadeStandardInterface’

	Suitable for holistic AAMs

	’LucasKanadeLinearInterface’

	Suitable for linear AAMs

	’LucasKanadePatchInterface’

	Suitable for patch-based AAMs

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	alpha2 (float, optional) – The regularization parameter of the Hessian matrix.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
project_out(J)

	Projects-out the appearance subspace from a given vector or matrix.

	Type

	ndarray

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (AAMAlgorithmResult) – The parametric iterative fitting result.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
property appearance_model

	Returns the appearance model of the AAM.

	Type

	menpo.model.PCAModel

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

AAMResult

	
class menpofit.aam.result.AAMResult(results, scales, affine_transforms, scale_transforms, image=None, gt_shape=None)

	Bases: MultiScaleParametricIterativeResult

Class for storing the multi-scale iterative fitting result of an AAM. It
holds the shapes, shape parameters, appearance parameters and costs per
iteration.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step is not counted in the number
of iterations.

	Parameters

	
	results (list of AAMAlgorithmResult) – The list of optimization results per scale.

	scales (list or tuple) – The list of scale values per scale (low to high).

	affine_transforms (list of menpo.transform.Affine) – The list of affine transforms per scale that transform the shapes into
the original image space.

	scale_transforms (list of menpo.shape.Scale) – The list of scaling transforms per scale.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shapes[0].

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property appearance_parameters

	Returns the list of appearance parameters obtained at each iteration
of the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property n_iters_per_scale

	Returns the number of iterations per scale of the fitting process.

	Type

	list of int

	
property n_scales

	Returns the number of scales used during the fitting process.

	Type

	int

	
property reconstructed_initial_shapes

	Returns the result of the reconstruction step that takes place at each
scale before applying the iterative optimisation.

	Type

	list of menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists) and
final_shape.

	Type

	list of menpo.shape.PointCloud

AAMAlgorithmResult

	
class menpofit.aam.result.AAMAlgorithmResult(shapes, shape_parameters, appearance_parameters, initial_shape=None, image=None, gt_shape=None, costs=None)

	Bases: ParametricIterativeResult

Class for storing the iterative result of an AAM optimisation algorithm.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step is not counted in the number
of iterations.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – The list of shapes per iteration. The first and last members
correspond to the initial and final shapes, respectively.

	shape_parameters (list of (n_shape_parameters,) ndarray) – The list of shape parameters per iteration. The first and last members
correspond to the initial and final shapes, respectively.

	appearance_parameters (list of (n_appearance_parameters,) ndarray) – The list of appearance parameters per iteration. The first and last
members correspond to the initial and final shapes, respectively.

	initial_shape (menpo.shape.PointCloud or None, optional) – The initial shape from which the fitting process started. If
None, then no initial shape is assigned.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	costs (list of float or None, optional) – The list of cost per iteration. If None, then it is assumed that
the cost function cannot be computed for the specific algorithm.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property appearance_parameters

	Returns the list of appearance parameters obtained at each iteration
of the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property reconstructed_initial_shape

	Returns the initial shape’s reconstruction with the shape model that was
used to initialise the iterative optimisation process.

	Type

	menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
reconstructed_initial_shape and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists),
reconstructed_initial_shape and final_shape.

	Type

	list of menpo.shape.PointCloud

load_balanced_frontal_face_fitter

	
menpofit.aam.load_balanced_frontal_face_fitter()

	Loads a frontal face patch-based AAM fitter that is a good compromise
between model size, fitting time and fitting performance. The model returns
68 facial landmark points (the standard IBUG68 markup).

Note that the first time you invoke this function, menpofit will
download the fitter from Menpo’s server. The fitter will then be stored
locally for future use.

The model is a PatchAAM trained using the following parameters:

	Parameter

	Value

	diagonal

	110

	scales

	(0.5, 1.0)

	patch_shape

	[(13, 13), (13, 13)]

	holistic_features

	menpo.feature.fast_dsift()

	n_shape

	[5, 20]

	n_appearance

	[30, 150]

	lk_algorithm_cls

	WibergInverseCompositional

It is also using the following sampling grid:

import numpy as np

patch_shape = (13, 13)
sampling_step = 4

sampling_grid = np.zeros(patch_shape, dtype=np.bool)
sampling_grid[::sampling_step, ::sampling_step] = True
sampling = [sampling_grid, sampling_grid]

Additionally, it is trained on LFPW trainset, HELEN trainset, IBUG and AFW
datasets (3283 images in total), which are hosted in
http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/.

	Returns

	fitter (LucasKanadeAAMFitter) – A pre-trained LucasKanadeAAMFitter based on a PatchAAM
that performs facial landmark localization returning 68 points (iBUG68).

menpofit.aps

Active Pictorial Structures

APS is a model that utilises a Gaussian Markov Random Field (GMRF) for
learning an appearance model with pairwise distributions based on a graph.
It also has a parametric statitical shape model (either using PCA or GMRF),
as well as a spring-like deformation prior term. The optimisation is performed
using a weighted Gauss-Newton algorithm with fixed Jacobian and Hessian.

	GenerativeAPS

Fitters

	GaussNewtonAPSFitter

Gauss-Newton Optimisation Algorithms

	Inverse

	Forward

Fitting Result

	APSResult

	APSAlgorithmResult

GenerativeAPS

	
class menpofit.aps.GenerativeAPS(images, group=None, appearance_graph=None, shape_graph=None, deformation_graph=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), patch_normalisation=<function no_op>, use_procrustes=True, precision_dtype=<class 'numpy.float32'>, max_shape_components=None, n_appearance_components=None, can_be_incremented=False, verbose=False, batch_size=None)

	Bases: object

Class for training a multi-scale Generative Active Pictorial Structures
model. Please see the references for a basic list of relevant papers.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the AAM. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	appearance_graph (list of graphs or a single graph or None, optional) – The graph to be used for the appearance menpo.model.GMRFModel training.
It must be a menpo.shape.UndirectedGraph. If None, then a
menpo.model.PCAModel is used instead.

	shape_graph (list of graphs or a single graph or None, optional) – The graph to be used for the shape menpo.model.GMRFModel training. It
must be a menpo.shape.UndirectedGraph. If None, then the shape
model is built using menpo.model.PCAModel.

	deformation_graph (list of graphs or a single graph or None, optional) – The graph to be used for the deformation menpo.model.GMRFModel
training. It must be either a menpo.shape.DirectedGraph or a
menpo.shape.Tree. If None, then the minimum spanning tree of the
data is computed.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the APS. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches to be extracted. If a list is provided,
then it defines a patch shape per scale.

	patch_normalisation (list of callable or a single callable, optional) – The normalisation function to be applied on the extracted patches. If
list, then it must have length equal to the number of scales. If a
single patch normalization callable, then this is the one applied to
all scales.

	use_procrustes (bool, optional) – If True, then Generalized Procrustes Alignment is applied before
building the deformation model.

	precision_dtype (numpy.dtype, optional) – The data type of the appearance GMRF’s precision matrix. For example, it
can be set to numpy.float32 for single precision or to numpy.float64
for double precision. Even though the precision matrix is stored as a
scipy.sparse matrix, this parameter has a big impact on the amount of
memory required by the model.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	n_appearance_components (list of int or int or None, optional) – The number of appearance components used for building the appearance
menpo.shape.GMRFModel. If list, then it must have length equal to
the number of scales. If a single int, then this is the one applied
to all scales. If None, the covariance matrix of each edge is
inverted using np.linalg.inv. If int, it is inverted using
truncated SVD using the specified number of components.

	can_be_incremented (bool, optional) – In case you intend to incrementally update the model in the future,
then this flag must be set to True from the first place. Note
that if True, the appearance and deformation menpo.shape.GMRFModel
models will occupy double memory.

	verbose (bool, optional) – If True, then the progress of building the APS will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

References

	1

	E. Antonakos, J. Alabort-i-Medina, and S. Zafeiriou, “Active
Pictorial Structures”, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1872-1882,
June 2015.

	
increment(images, group=None, batch_size=None, verbose=False)

	Method that incrementally updates the APS model with a new batch of
training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the APS. If None
and the images only have a single landmark group, then that is the
one that will be used. Note that all the training images need to
have the specified landmark group.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	verbose (bool, optional) – If True, then the progress of building the APS will be printed.

	
instance(shape_weights=None, scale_index=-1, as_graph=False)

	Generates an instance of the shape model.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	scale_index (int, optional) – The scale to be used.

	as_graph (bool, optional) – If True, then the instance will be returned as a
menpo.shape.PointTree or a menpo.shape.PointDirectedGraph,
depending on the type of the deformation graph.

	
random_instance(scale_index=-1, as_graph=False)

	Generates a random instance of the APS.

	Parameters

	
	scale_index (int, optional) – The scale to be used.

	as_graph (bool, optional) – If True, then the instance will be returned as a
menpo.shape.PointTree or a menpo.shape.PointDirectedGraph,
depending on the type of the deformation graph.

	
view_appearance_graph_widget(scale_index=-1, figure_size=(7, 7))

	Visualize the appearance graph using an interactive widget.

	Parameters

	
	scale_index (int, optional) – The scale to be used.

	figure_size ((int, int), optional) – The size of the rendered figure.

	Raises

	ValueError – Scale level {scale_index} uses a PCA appearance model, so there
 is no graph

	
view_deformation_graph_widget(scale_index=-1, figure_size=(7, 7))

	Visualize the deformation graph using an interactive widget.

	Parameters

	
	scale_index (int, optional) – The scale to be used.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_deformation_model(scale_index=-1, n_std=2, render_colour_bar=False, colour_map='jet', image_view=True, figure_id=None, new_figure=False, render_graph_lines=True, graph_line_colour='b', graph_line_style='-', graph_line_width=1.0, ellipse_line_colour='r', ellipse_line_style='-', ellipse_line_width=1.0, render_markers=True, marker_style='o', marker_size=5, marker_face_colour='k', marker_edge_colour='k', marker_edge_width=1.0, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', crop_proportion=0.1, figure_size=(7, 7))

	Visualize the deformation model by plotting a Gaussian ellipsis per
graph edge.

	Parameters

	
	scale_index (int, optional) – The scale to be used.

	n_std (float, optional) – This defines the size of the ellipses in terms of number of standard
deviations.

	render_colour_bar (bool, optional) – If True, then the ellipses will be coloured based on their
normalized standard deviations and a colour bar will also appear on
the side. If False, then all the ellipses will have the same
colour.

	colour_map (str, optional) – A valid Matplotlib colour map. For more info, please refer to
matplotlib.cm.

	image_view (bool, optional) – If True the ellipses will be rendered in the image coordinates
system.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_graph_lines (bool, optional) – Defines whether to plot the graph’s edges.

	graph_line_colour (See Below, optional) – The colour of the lines of the graph’s edges.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	graph_line_style ({-, --, -., :}, optional) – The style of the lines of the graph’s edges.

	graph_line_width (float, optional) – The width of the lines of the graph’s edges.

	ellipse_line_colour (See Below, optional) – The colour of the lines of the ellipses.
Example options:

{r, g, b, c, m, k, w}
or
(3,) ndarray

	ellipse_line_style ({-, --, -., :}, optional) – The style of the lines of the ellipses.

	ellipse_line_width (float, optional) – The width of the lines of the ellipses.

	render_markers (bool, optional) – If True, the centers of the ellipses will be rendered.

	marker_style (See Below, optional) – The style of the centers of the ellipses. Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the centers of the ellipses in points.

	marker_face_colour (See Below, optional) – The face (filling) colour of the centers of the ellipses.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (See Below, optional) – The edge colour of the centers of the ellipses.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The edge width of the centers of the ellipses.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold,demibold, demi, bold, heavy, extra bold, black}

	crop_proportion (float, optional) – The proportion to be left around the centers’ pointcloud.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	
view_shape_graph_widget(scale_index=-1, figure_size=(7, 7))

	Visualize the shape graph using an interactive widget.

	Parameters

	
	scale_index (int, optional) – The scale to be used.

	figure_size ((int, int), optional) – The size of the rendered figure.

	Raises

	ValueError – Scale level {scale_index} uses a PCA shape model, so there is no
 graph

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the APS object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

GaussNewtonAPSFitter

	
class menpofit.aps.GaussNewtonAPSFitter(aps, gn_algorithm_cls=<class 'menpofit.aps.algorithm.gn.Inverse'>, n_shape=None, weight=200.0, sampling=None)

	Bases: APSFitter

A class for fitting an APS model with Gauss-Newton optimization.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step takes place at each scale
and it is not considered as an iteration, thus it is not counted
for the provided max_iters.

	Parameters

	
	aps (GenerativeAPS or subclass) – The trained model.

	gn_algorithm_cls (class, optional) – The Gauss-Newton optimisation algorithm that will get applied. The
possible algorithms are Inverse and Forward. Note that
the Forward algorithm is too slow. It is not recommended to be
used for fitting an APS and is only included for comparison purposes.

	n_shape (int or float or list of those or None, optional) – The number of shape components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_shape_components
during training.

	weight (float or list of float, optional) – The weight between the appearance cost and the deformation cost. The
provided value gets multiplied with the deformation cost. If float,
then the provided value will be used for all scales. If list,
then it should define a value per scale.

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it defines the
sub-sampling step of the sampling mask. If ndarray, then it
explicitly defines the sampling mask. If None, then no
sub-sampling is applied. Note that depending on the model and the
size of the appearance precision matrix, the sub-sampling may be
impossible to be applied due to insufficient memory. This is because
the sub-sampling of the appearance precision matrix involves converting
it to scipy.sparse.lil_matrix, sub-sampling it and re-convert it
back to scipy.sparse.bsr_matrix, which is a memory intensive
procedure.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within an APSResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

	
property aps

	The trained APS model.

	Type

	GenerativeAPS or subclass

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

Inverse

	
class menpofit.aps.Inverse(aps_interface, eps=1e-05)

	Bases: GaussNewton

Inverse Gauss-Newton algorithm for APS.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	Returns

	fitting_result (APSAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance GMRF model.

	Type

	menpo.model.GMRFModel

	
property deformation_model

	Returns the deformation GMRF model.

	Type

	menpo.model.GMRFModel

	
property template

	Returns the template (usually the mean appearance).

	Type

	menpo.image.Image

	
property transform

	Returns the motion model.

	Type

	OrthoPDM

Forward

	
class menpofit.aps.Forward(aps_interface, eps=1e-05)

	Bases: GaussNewton

Forward Gauss-Newton algorithm for APS.

Note

The Forward optimization is too slow. It is not recommended to be
used for fitting an APS and is only included for comparison
purposes. Use Inverse instead.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	Returns

	fitting_result (APSAlgorithmResult) – The parametric iterative fitting result.

	
property appearance_model

	Returns the appearance GMRF model.

	Type

	menpo.model.GMRFModel

	
property deformation_model

	Returns the deformation GMRF model.

	Type

	menpo.model.GMRFModel

	
property template

	Returns the template (usually the mean appearance).

	Type

	menpo.image.Image

	
property transform

	Returns the motion model.

	Type

	OrthoPDM

APSResult

	
class menpofit.aps.result.APSResult(results, scales, affine_transforms, scale_transforms, image=None, gt_shape=None)

	Bases: MultiScaleParametricIterativeResult

Class for storing the multi-scale iterative fitting result of an APS. It
holds the shapes, shape parameters, appearance parameters and costs per
iteration.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step is not counted in the number
of iterations.

	Parameters

	
	results (list of APSAlgorithmResult) – The list of optimization results per scale.

	scales (list or tuple) – The list of scale values per scale (low to high).

	affine_transforms (list of menpo.transform.Affine) – The list of affine transforms per scale that transform the shapes into
the original image space.

	scale_transforms (list of menpo.shape.Scale) – The list of scaling transforms per scale.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shapes[0].

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property appearance_costs

	Returns a list with the appearance cost per iteration. It returns
None if the costs are not computed.

	Type

	list of float or None

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property deformation_costs

	Returns a list with the deformation cost per iteration. It returns
None if the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property n_iters_per_scale

	Returns the number of iterations per scale of the fitting process.

	Type

	list of int

	
property n_scales

	Returns the number of scales used during the fitting process.

	Type

	int

	
property reconstructed_initial_shapes

	Returns the result of the reconstruction step that takes place at each
scale before applying the iterative optimisation.

	Type

	list of menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists) and
final_shape.

	Type

	list of menpo.shape.PointCloud

APSAlgorithmResult

	
class menpofit.aps.result.APSAlgorithmResult(shapes, shape_parameters, initial_shape=None, image=None, gt_shape=None, appearance_costs=None, deformation_costs=None, costs=None)

	Bases: ParametricIterativeResult

Class for storing the iterative result of an APS optimisation algorithm.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step is not counted in the number
of iterations.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – The list of shapes per iteration. The first and last members
correspond to the initial and final shapes, respectively.

	shape_parameters (list of (n_shape_parameters,) ndarray) – The list of shape parameters per iteration. The first and last members
correspond to the initial and final shapes, respectively.

	initial_shape (menpo.shape.PointCloud or None, optional) – The initial shape from which the fitting process started. If
None, then no initial shape is assigned.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	appearance_costs (list of float or None, optional) – The list of the appearance cost per iteration. If None, then it
is assumed that the cost function cannot be computed for the specific
algorithm.

	deformation_costs (list of float or None, optional) – The list of the deformation cost per iteration. If None, then it
is assumed that the cost function cannot be computed for the specific
algorithm.

	costs (list of float or None, optional) – The list of the total cost per iteration. If None, then it is
assumed that the cost function cannot be computed for the specific
algorithm.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property appearance_costs

	Returns a list with the appearance cost per iteration. It returns
None if the costs are not computed.

	Type

	list of float or None

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property deformation_costs

	Returns a list with the deformation cost per iteration. It returns
None if the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property reconstructed_initial_shape

	Returns the initial shape’s reconstruction with the shape model that was
used to initialise the iterative optimisation process.

	Type

	menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
reconstructed_initial_shape and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists),
reconstructed_initial_shape and final_shape.

	Type

	list of menpo.shape.PointCloud

menpofit.atm

Active Template Model

ATM is a generative model that performs deformable alignment between a
template image and a test image with respect to a statistical parametric
shape model. MenpoFit has several ATMs which differ in the manner that they
compute the warp (thus represent the appearance features).

	ATM

	HolisticATM

	MaskedATM

	LinearATM

	LinearMaskedATM

	PatchATM

Fitter

	LucasKanadeATMFitter

Lucas-Kanade Optimisation Algorithms

	ForwardCompositional

	InverseCompositional

ATM

	
class menpofit.atm.base.ATM(template, shapes, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), transform=<class 'menpofit.transform.piecewiseaffine.DifferentiablePiecewiseAffine'>, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, max_shape_components=None, verbose=False, batch_size=None)

	Bases: object

Class for training a multi-scale holistic Active Template Model.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the ATM.
If None and the template only has a single landmark group, then
that is the one that will be used.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the ATM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	transform (subclass of DL and DX, optional) – A differential warp transform object, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

References

	1

	S. Baker, and I. Matthews. “Lucas-Kanade 20 years on: A unifying
framework”, International Journal of Computer Vision, 56(3): 221-255,
2004.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface.

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(template, shapes, group=None, shape_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained ATM with a new set of training shapes
and a new template.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the
ATM. If None and the template only has a single landmark group,
then that is the one that will be used.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, scale_index=-1)

	Generates a novel ATM instance given a set of shape weights. If no
weights are provided, the mean ATM instance is returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the ATM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
view_atm_widget(n_shape_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the ATM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the ATM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

HolisticATM

	
menpofit.atm.HolisticATM

	alias of ATM

MaskedATM

	
class menpofit.atm.MaskedATM(template, shapes, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), max_shape_components=None, verbose=False, batch_size=None)

	Bases: ATM

Class for training a multi-scale patch-based Masked Active Template Model.
The appearance of this model is formulated by simply masking an image
with a patch-based mask.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the ATM.
If None and the template only has a single landmark group, then
that is the one that will be used.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the ATM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	patch_shape ((int, int), optional) – The size of the patches of the mask that is used to sample the
appearance vectors.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface.

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(template, shapes, group=None, shape_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained ATM with a new set of training shapes
and a new template.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the
ATM. If None and the template only has a single landmark group,
then that is the one that will be used.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, scale_index=-1)

	Generates a novel ATM instance given a set of shape weights. If no
weights are provided, the mean ATM instance is returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the ATM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
view_atm_widget(n_shape_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the ATM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the ATM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

LinearATM

	
class menpofit.atm.LinearATM(template, shapes, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), transform=<class 'menpofit.transform.thinsplatesplines.DifferentiableThinPlateSplines'>, max_shape_components=None, verbose=False, batch_size=None)

	Bases: ATM

Class for training a multi-scale Linear Active Template Model.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the ATM.
If None and the template only has a single landmark group, then
that is the one that will be used.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the ATM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	transform (subclass of DL and DX, optional) – A differential warp transform object, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface.

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(template, shapes, group=None, shape_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained ATM with a new set of training shapes
and a new template.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the
ATM. If None and the template only has a single landmark group,
then that is the one that will be used.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, scale_index=-1)

	Generates a novel ATM instance given a set of shape weights. If no
weights are provided, the mean ATM instance is returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the ATM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
view_atm_widget(n_shape_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the ATM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the ATM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

LinearMaskedATM

	
class menpofit.atm.LinearMaskedATM(template, shapes, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), max_shape_components=None, verbose=False, batch_size=None)

	Bases: ATM

Class for training a multi-scale Linear Masked Active Template Model.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the ATM.
If None and the template only has a single landmark group, then
that is the one that will be used.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the ATM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches of the mask that is used to extract the
appearance vectors. If a list is provided, then it defines a patch
shape per scale.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface.

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(template, shapes, group=None, shape_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained ATM with a new set of training shapes
and a new template.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the
ATM. If None and the template only has a single landmark group,
then that is the one that will be used.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, scale_index=-1)

	Generates a novel ATM instance given a set of shape weights. If no
weights are provided, the mean ATM instance is returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the ATM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
view_atm_widget(n_shape_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the ATM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the ATM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

PatchATM

	
class menpofit.atm.PatchATM(template, shapes, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), patch_shape=(17, 17), patch_normalisation=<function no_op>, max_shape_components=None, verbose=False, batch_size=None)

	Bases: ATM

Class for training a multi-scale Patch-Based Active Template Model.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the ATM.
If None and the template only has a single landmark group, then
that is the one that will be used.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the ATM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches to be extracted. If a list is provided,
then it defines a patch shape per scale.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
build_fitter_interfaces(sampling)

	Method that builds the correct Lucas-Kanade fitting interface.

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of Lucas-Kanade interface per scale.

	
increment(template, shapes, group=None, shape_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained ATM with a new set of training shapes
and a new template.

	Parameters

	
	template (menpo.image.Image) – The template image.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes.

	group (str or None, optional) – The landmark group of the template that will be used to train the
ATM. If None and the template only has a single landmark group,
then that is the one that will be used.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	verbose (bool, optional) – If True, then the progress of building the ATM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
instance(shape_weights=None, scale_index=-1)

	Generates a novel ATM instance given a set of shape weights. If no
weights are provided, the mean ATM instance is returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the ATM.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The ATM instance.

	
view_atm_widget(n_shape_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the ATM using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the ATM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

LucasKanadeATMFitter

	
class menpofit.atm.LucasKanadeATMFitter(atm, lk_algorithm_cls=<class 'menpofit.atm.algorithm.InverseCompositional'>, n_shape=None, sampling=None)

	Bases: MultiScaleParametricFitter

Class for defining an ATM fitter using the Lucas-Kanade optimization.

	Parameters

	
	atm (ATM or subclass) – The trained ATM model.

	lk_algorithm_cls (class, optional) – The Lukas-Kanade optimisation algorithm that will get applied. The
possible algorithms are:

	Class

	Warp Direction

	Warp Update

	ForwardCompositional

	Forward

	Compositional

	InverseCompositional

	Inverse

	

	n_shape (int or float or list of those or None, optional) – The number of shape components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_shape_components
during training.

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it defines the
sub-sampling step of the sampling mask. If ndarray, then it
explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within a
MultiScaleParametricIterativeResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

	
property atm

	The trained ATM model.

	Type

	ATM or subclass

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

ForwardCompositional

	
class menpofit.atm.ForwardCompositional(atm_interface, eps=1e-05)

	Bases: Compositional

Forward Compositional (FC) Gauss-Newton algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (ParametricIterativeResult) – The parametric iterative fitting result.

	
property template

	Returns the template of the ATM.

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

InverseCompositional

	
class menpofit.atm.InverseCompositional(atm_interface, eps=1e-05)

	Bases: Compositional

Inverse Compositional (IC) Gauss-Newton algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (ParametricIterativeResult) – The parametric iterative fitting result.

	
property template

	Returns the template of the ATM.

	Type

	menpo.image.Image or subclass

	
property transform

	Returns the model driven differential transform object of the AAM, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	Type

	subclass of DL and DX

menpofit.clm

Constrained Local Model

Deformable model that consists of a generative parametric shape model and
discriminatively trained experts per part.

	CLM

Fitter

	GradientDescentCLMFitter

Gradient Descent Optimisation Algorithms

	ActiveShapeModel

	RegularisedLandmarkMeanShift

Experts Ensemble

Algorithms for learning an ensemble of discriminative experts.

	CorrelationFilterExpertEnsemble

Experts

Discriminative experts

	IncrementalCorrelationFilterThinWrapper

CLM

	
class menpofit.clm.CLM(images, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1), patch_shape=(17, 17), patch_normalisation=<function no_op>, context_shape=(34, 34), cosine_mask=True, sample_offsets=None, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, expert_ensemble_cls=<class 'menpofit.clm.expert.ensemble.CorrelationFilterExpertEnsemble'>, max_shape_components=None, verbose=False, batch_size=None)

	Bases: object

Class for training a multi-scale holistic Constrained Local Model. Please
see the references for a basic list of relevant papers.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the CLM. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. If list,
then it must define a feature function per scale. Please refer to
menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the CLM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches to be extracted. If a list is provided,
then it defines a patch shape per scale.

	patch_normalisation (callable, optional) – The normalisation function to be applied on the extracted patches.

	context_shape ((int, int) or list of (int, int), optional) – The context shape for the convolution. If a list is provided,
then it defines a context shape per scale.

	cosine_mask (bool, optional) – If True, then a cosine mask (Hanning function) will be applied on
the extracted patches.

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The offsets to sample from within a patch. So (0, 0) is the centre
of the patch (no offset) and (1, 0) would be sampling the patch
from 1 pixel up the first axis away from the centre. If None,
then no offsets are applied.

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	expert_ensemble_cls (subclass of ExpertEnsemble, optional) – The class to be used for training the ensemble of experts. The most
common choice is CorrelationFilterExpertEnsemble.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	verbose (bool, optional) – If True, then the progress of building the CLM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

References

	1

	D. Cristinacce, and T. F. Cootes. “Feature Detection and Tracking
with Constrained Local Models”, British Machine Vision Conference (BMVC),
2006.

	2

	J.M. Saragih, S. Lucey, and J. F. Cohn. “Deformable model fitting by
regularized landmark mean-shift”, International Journal of Computer
Vision (IJCV), 91(2): 200-215, 2011.

	3

	T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. “Active
Shape Models - their training and application”, Computer Vision and Image
Understanding (CVIU), 61(1): 38-59, 1995.

	
increment(images, group=None, shape_forgetting_factor=1.0, verbose=False, batch_size=None)

	Method to increment the trained CLM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the CLM. If None
and the images only have a single landmark group, then that is the
one that will be used. Note that all the training images need to
have the specified landmark group.

	shape_forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples for the shape model. If 1.0, all samples
are weighted equally and, hence, the result is the exact same as
performing batch PCA on the concatenated list of old and new
simples. If <1.0, more emphasis is put on the new samples.

	verbose (bool, optional) – If True, then the progress of building the CLM will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
shape_instance(shape_weights=None, scale_index=-1)

	Generates a novel shape instance given a set of shape weights. If no
weights are provided, the mean shape is returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	instance (menpo.shape.PointCloud) – The shape instance.

	
view_clm_widget(n_shape_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the CLM object using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	Raises

	ValueError – Only convolution-based expert ensembles can be visualized.

	
view_expert_ensemble_widget(figure_size=(7, 7))

	Visualizes the ensemble of experts of the CLM object using an
interactive widget.

	Parameters

	figure_size ((int, int), optional) – The size of the plotted figures.

	Raises

	ValueError – Only convolution-based expert ensembles can be visualized.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(7, 7))

	Visualizes the shape models of the CLM object using an interactive
widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

GradientDescentCLMFitter

	
class menpofit.clm.GradientDescentCLMFitter(clm, gd_algorithm_cls=<class 'menpofit.clm.algorithm.gd.RegularisedLandmarkMeanShift'>, n_shape=None)

	Bases: CLMFitter

Class for defining an CLM fitter using gradient descent optimization.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step takes place at each scale
and it is not considered as an iteration, thus it is not counted
for the provided max_iters.

	Parameters

	
	clm (CLM or subclass) – The trained CLM model.

	gd_algorithm_cls (class, optional) – The gradient descent optimisation algorithm that will get applied. The
possible options are RegularisedLandmarkMeanShift and
ActiveShapeModel.

	n_shape (int or float or list of those or None, optional) – The number of shape components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_shape_components
during training.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
property clm

	The trained CLM model.

	Type

	CLM or subclass

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

ActiveShapeModel

	
class menpofit.clm.ActiveShapeModel(expert_ensemble, shape_model, gaussian_covariance=10, eps=1e-05)

	Bases: GradientDescentCLMAlgorithm

Active Shape Model (ASM) algorithm.

	Parameters

	
	expert_ensemble (subclass of ExpertEnsemble) – The ensemble of experts object, e.g.
CorrelationFilterExpertEnsemble.

	shape_model (subclass of PDM, optional) – The shape model object, e.g. OrthoPDM.

	gaussian_covariance (int or float, optional) – The covariance of the Gaussian kernel.

	eps (float, optional) – Value for checking the convergence of the optimization.

References

	1

	T. F. Cootes, and C. J. Taylor. “Active shape models-‘smart snakes’”,
British Machine Vision Conference, pp. 266-275, 1992.

	2

	T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. “Active
Shape Models - their training and application”, Computer Vision and Image
Understanding (CVIU), 61(1): 38-59, 1995.

	3

	A. Blake, and M. Isard. “Active Shape Models”, Active Contours,
Springer, pp. 25-37, 1998.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (ParametricIterativeResult) – The parametric iterative fitting result.

RegularisedLandmarkMeanShift

	
class menpofit.clm.RegularisedLandmarkMeanShift(expert_ensemble, shape_model, kernel_covariance=10, eps=1e-05)

	Bases: GradientDescentCLMAlgorithm

Regularized Landmark Mean-Shift (RLMS) algorithm.

	Parameters

	
	expert_ensemble (subclass of ExpertEnsemble) – The ensemble of experts object, e.g.
CorrelationFilterExpertEnsemble.

	shape_model (subclass of PDM, optional) – The shape model object, e.g. OrthoPDM.

	kernel_covariance (int or float, optional) – The covariance of the kernel.

	eps (float, optional) – Value for checking the convergence of the optimization.

References

	1

	J.M. Saragih, S. Lucey, and J. F. Cohn. “Deformable model fitting by
regularized landmark mean-shift”, International Journal of Computer
Vision (IJCV), 91(2): 200-215, 2011.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, map_inference=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	map_inference (bool, optional) – If True, then the solution will be given after performing MAP
inference.

	Returns

	fitting_result (ParametricIterativeResult) – The parametric iterative fitting result.

CorrelationFilterExpertEnsemble

	
class menpofit.clm.CorrelationFilterExpertEnsemble(images, shapes, icf_cls=<class 'menpofit.clm.expert.base.IncrementalCorrelationFilterThinWrapper'>, patch_shape=(17, 17), context_shape=(34, 34), response_covariance=3, patch_normalisation=functools.partial(<function normalize_norm>, mode='per_channel', error_on_divide_by_zero=False), cosine_mask=True, sample_offsets=None, prefix='', verbose=False)

	Bases: ConvolutionBasedExpertEnsemble

Class for defining an ensemble of correlation filter experts.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes that correspond to the images.

	icf_cls (class, optional) – The incremental correlation filter class. For example
IncrementalCorrelationFilterThinWrapper.

	patch_shape ((int, int), optional) – The shape of the patches that will be extracted around the landmarks.
Those patches are used to train the experts.

	context_shape ((int, int), optional) – The context shape for the convolution.

	response_covariance (int, optional) – The covariance of the generated Gaussian response.

	patch_normalisation (callable, optional) – A normalisation function that will be applied on the extracted patches.

	cosine_mask (bool, optional) – If True, then a cosine mask (Hanning function) will be applied on
the extracted patches.

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The offsets to sample from within a patch. So (0, 0) is the centre
of the patch (no offset) and (1, 0) would be sampling the patch
from 1 pixel up the first axis away from the centre. If None,
then no offsets are applied.

	prefix (str, optional) – The prefix of the printed progress information.

	verbose (bool, optional) – If True, then information will be printed regarding the training
progress.

	
increment(images, shapes, prefix='', verbose=False)

	Increments the learned ensemble of convolution-based experts given a new
set of training data.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	shapes (list of menpo.shape.PointCloud) – The list of training shapes that correspond to the images.

	prefix (str, optional) – The prefix of the printed training progress.

	verbose (bool, optional) – If True, then information about the training progress will be
printed.

	
predict_probability(image, shape)

	Method for predicting the probability map of the response experts on a
given image. Note that the provided shape must have the same number of
points as the number of experts.

	Parameters

	
	image (menpo.image.Image or subclass) – The test image.

	shape (menpo.shape.PointCloud) – The shape that corresponds to the image from which the patches
will be extracted.

	Returns

	probability_map ((n_experts, 1, height, width) ndarray) – The probability map of the response of each expert.

	
predict_response(image, shape)

	Method for predicting the response of the experts on a given image. Note
that the provided shape must have the same number of points as the
number of experts.

	Parameters

	
	image (menpo.image.Image or subclass) – The test image.

	shape (menpo.shape.PointCloud) – The shape that corresponds to the image from which the patches
will be extracted.

	Returns

	response ((n_experts, 1, height, width) ndarray) – The response of each expert.

	
view_frequency_filter_images_widget(figure_size=(7, 7), style='coloured', browser_style='buttons')

	Visualizes the filters on the frequency domain using an interactive
widget.

	Parameters

	
	figure_size ((int, int), optional) – The initial size of the rendered figure.

	style ({'coloured', 'minimal'}, optional) – If 'coloured', then the style of the widget will be coloured. If
minimal, then the style is simple using black and white colours.

	browser_style ({'buttons', 'slider'}, optional) – It defines whether the selector of the objects will have the form of
plus/minus buttons or a slider.

	
view_spatial_filter_images_widget(figure_size=(7, 7), style='coloured', browser_style='buttons')

	Visualizes the filters on the spatial domain using an interactive widget.

	Parameters

	
	figure_size ((int, int), optional) – The initial size of the rendered figure.

	style ({'coloured', 'minimal'}, optional) – If 'coloured', then the style of the widget will be coloured. If
minimal, then the style is simple using black and white colours.

	browser_style ({'buttons', 'slider'}, optional) – It defines whether the selector of the objects will have the form of
plus/minus buttons or a slider.

	
property frequency_filter_images

	Returns a list of n_experts filter images on the frequency domain.

	Type

	list of menpo.image.Image

	
property n_experts

	Returns the number of experts.

	Type

	int

	
property n_sample_offsets

	Returns the number of offsets that are sampled within a patch.

	Type

	int

	
property padded_size

	Returns the convolution pad size, i.e. floor(1.5 * patch_shape - 1).

	Type

	(int, int)

	
property search_shape

	Returns the search shape (patch_shape).

	Type

	(int, int)

	
property spatial_filter_images

	Returns a list of n_experts filter images on the spatial domain.

	Type

	list of menpo.image.Image

IncrementalCorrelationFilterThinWrapper

	
class menpofit.clm.IncrementalCorrelationFilterThinWrapper(cf_callable=<function mccf>, icf_callable=<function imccf>)

	Bases: object

Wrapper class for defining an Incremental Correlation Filter.

	Parameters

	
	cf_callable (callable, optional) – The correlation filter function. Possible options are:

	Class

	Method

	mccf

	Multi-Channel Correlation Filter

	mosse

	Minimum Output Sum of Squared Errors Filter

	icf_callable (callable, optional) – The incremental correlation filter function. Possible options are:

	Class

	Method

	imccf

	Incremental Multi-Channel Correlation Filter

	imosse

	Incremental Minimum Output Sum of Squared Errors Filter

	
increment(A, B, n_x, Z, t)

	Method that trains the correlation filter.

	Parameters

	
	A ((N,) ndarray) – The current auto-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels

	B ((N, N) ndarray) – The current cross-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels

	n_x (int) – The current number of images.

	Z (list or (n_images, n_channels, patch_h, patch_w) ndarray) – The training images (patches). If list, then it consists of
n_images (n_channels, patch_h, patch_w) ndarray members.

	t ((1, response_h, response_w) ndarray) – The desired response.

	Returns

	
	correlation_filter ((n_channels, response_h, response_w) ndarray) – The learned correlation filter.

	auto_correlation ((N,) ndarray) – The auto-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels

	cross_correlation ((N, N) ndarray) – The cross-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels

	
train(X, t)

	Method that trains the correlation filter.

	Parameters

	
	X (list or (n_images, n_channels, patch_h, patch_w) ndarray) – The training images (patches). If list, then it consists of
n_images (n_channels, patch_h, patch_w) ndarray members.

	t ((1, response_h, response_w) ndarray) – The desired response.

	Returns

	
	correlation_filter ((n_channels, response_h, response_w) ndarray) – The learned correlation filter.

	auto_correlation ((N,) ndarray) – The auto-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels

	cross_correlation ((N, N) ndarray) – The cross-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels

menpofit.unified_aam_clm

Unified Active Appearance Model and Constrained Local Model

This method combines a holistic AAM with a part-based CLM under a unified
optimisation problem.

	UnifiedAAMCLM

Fitter

The model optimised with a combination of Lucas-Kanade and Regularised
Landmark Mean Shift algorithms.

	UnifiedAAMCLMFitter

Optimisation Algorithms

	AlternatingRegularisedLandmarkMeanShift

	ProjectOutRegularisedLandmarkMeanShift

Fitting Result

	UnifiedAAMCLMResult

	UnifiedAAMCLMAlgorithmResult

UnifiedAAMCLM

	
class menpofit.unified_aam_clm.base.UnifiedAAMCLM(images, group=None, holistic_features=<function no_op>, reference_shape=None, diagonal=None, scales=(0.5, 1.0), expert_ensemble_cls=<class 'menpofit.clm.expert.ensemble.CorrelationFilterExpertEnsemble'>, patch_shape=(17, 17), context_shape=(34, 34), sample_offsets=None, transform=<class 'menpofit.transform.piecewiseaffine.DifferentiablePiecewiseAffine'>, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, max_shape_components=None, max_appearance_components=None, sigma=None, boundary=3, response_covariance=2, patch_normalisation=<function no_op>, cosine_mask=True, verbose=False)

	Bases: object

Class for training a multi-scale unified holistic AAM and CLM as
presented in [1].
Please see the references for AAMs and CLMs in their respective
base classes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that will be used to train the model. If None and
the images only have a single landmark group, then that is the one
that will be used. Note that all the training images need to have the
specified landmark group.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for building the AAM. The purpose
of the reference shape is to normalise the size of the training images.
The normalization is performed by rescaling all the training images
so that the scale of their ground truth shapes matches the scale of
the reference shape. Note that the reference shape is rescaled with
respect to the diagonal before performing the normalisation. If
None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	expert_ensemble_cls (subclass of ExpertEnsemble, optional) – The class to be used for training the ensemble of experts. The most
common choice is CorrelationFilterExpertEnsemble.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches to be extracted. If a list is provided,
then it defines a patch shape per scale.

	context_shape ((int, int) or list of (int, int), optional) – The context shape for the convolution. If a list is provided,
then it defines a context shape per scale.

	sample_offsets ((n_offsets, n_dims) ndarray or None, optional) – The sample_offsets to sample from within a patch. So (0, 0) is the
centre of the patch (no offset) and (1, 0) would be sampling the
patch from 1 pixel up the first axis away from the centre. If None,
then no sample_offsets are applied.

	transform (subclass of DL and DX, optional) – A differential warp transform object, e.g.
DifferentiablePiecewiseAffine or
DifferentiableThinPlateSplines.

	shape_model_cls (subclass of OrthoPDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	max_shape_components (int, float, list of those or None, optional) – The number of shape components to keep. If int, then it sets the exact
number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should
define a value per scale. If a single number, then this will be
applied to all scales. If None, then all the components are kept.
Note that the unused components will be permanently trimmed.

	max_appearance_components (int, float, list of those or None, optional) – The number of appearance components to keep. If int, then it sets the
exact number of components. If float, then it defines the variance
percentage that will be kept. If list, then it should define a value
per scale. If a single number, then this will be applied to all
scales. If None, then all the components are kept. Note that the
unused components will be permanently trimmed.

	sigma (float or None, optional) – If not None, the input images are smoothed with an isotropic
Gaussian filter with the specified standard deviation.

	boundary (int, optional) – The number of pixels to be left as a safe margin on the boundaries
of the reference frame (has potential effects on the gradient
computation).

	response_covariance (int, optional) – The covariance of the generated Gaussian response.

	patch_normalisation (callable, optional) – The normalisation function to be applied on the extracted patches.

	cosine_mask (bool, optional) – If True, then a cosine mask (Hanning function) will be applied on
the extracted patches.

	verbose (bool, optional) – If True, then the progress of building the model will be printed.

References

	1

	J. Alabort-i-Medina, and S. Zafeiriou. “Unifying holistic and
parts-based deformable model fitting”, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

	
appearance_reconstructions(appearance_parameters, n_iters_per_scale)

	Method that generates the appearance reconstructions given a set of
appearance parameters. This is to be combined with a
UnifiedAAMCLMResult object, in order to generate the appearance
reconstructions of a fitting procedure.

	Parameters

	
	appearance_parameters (list of (n_params,) ndarray) – A set of appearance parameters per fitting iteration. It can be
retrieved as a property of an UnifiedAAMCLMResult object.

	n_iters_per_scale (list of int) – The number of iterations per scale. This is necessary in order to
figure out which appearance parameters correspond to the model of
each scale. It can be retrieved as a property of a
UnifiedAAMCLMResult object.

	Returns

	appearance_reconstructions (list of menpo.image.Image) – List of the appearance reconstructions that correspond to the
provided parameters.

	
build_fitter_interfaces(sampling)

	Method that builds the correct fitting interface for a
UnifiedAAMCLMFitter.

	Parameters

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it
defines the sub-sampling step of the sampling mask. If ndarray,
then it explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	Returns

	fitter_interfaces (list) – The list of fitting interfaces per scale.

	
instance(shape_weights=None, appearance_weights=None, scale_index=-1)

	Generates a novel instance of the AAM part of the model given a set of
shape and appearance weights. If no weights are provided, then the mean
AAM instance is returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	appearance_weights ((n_weights,) ndarray or list or None, optional) – The weights of the appearance model that will be used to create a
novel appearance instance. If None, the weights are assumed
to be zero, thus the mean appearance is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
random_instance(scale_index=-1)

	Generates a random instance of the AAM part of the model.

	Parameters

	scale_index (int, optional) – The scale to be used.

	Returns

	image (menpo.image.Image) – The AAM instance.

	
shape_instance(shape_weights=None, scale_index=-1)

	Generates a novel shape instance given a set of shape weights. If no
weights are provided, the mean shape is returned.

	Parameters

	
	shape_weights ((n_weights,) ndarray or list or None, optional) – The weights of the shape model that will be used to create a novel
shape instance. If None, the weights are assumed to be zero,
thus the mean shape is used.

	scale_index (int, optional) – The scale to be used.

	Returns

	instance (menpo.shape.PointCloud) – The shape instance.

	
view_aam_widget(n_shape_parameters=5, n_appearance_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(10, 8))

	Visualizes the AAM part of the model using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	n_appearance_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_appearance_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(10, 8))

	Visualizes the appearance models of the Unified AAM CLM object using an
interactive widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of appearance principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
view_clm_widget(n_shape_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(10, 8))

	Visualizes the CLM part of the model using an interactive widget.

	Parameters

	
	n_shape_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	Raises

	ValueError – Only convolution-based expert ensembles can be visualized.

	
view_expert_ensemble_widget(figure_size=(10, 8))

	Visualizes the ensemble of experts of the Unified AAM CLM object using
an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The size of the plotted figures.

	Raises

	ValueError – Only convolution-based expert ensembles can be visualized.

	
view_shape_models_widget(n_parameters=5, parameters_bounds=(-3.0, 3.0), mode='multiple', figure_size=(10, 8))

	Visualizes the shape models of the Unified AAM CLM object using an
interactive widget.

	Parameters

	
	n_parameters (int or list of int or None, optional) – The number of shape principal components to be used for the
parameters sliders. If int, then the number of sliders per
scale is the minimum between n_parameters and the number of
active components per scale. If list of int, then a number of
sliders is defined per scale. If None, all the active
components per scale will have a slider.

	parameters_bounds ((float, float), optional) – The minimum and maximum bounds, in std units, for the sliders.

	mode ({single, multiple}, optional) – If 'single', only a single slider is constructed along with a
drop down menu. If 'multiple', a slider is constructed for
each parameter.

	figure_size ((int, int), optional) – The size of the rendered figure.

	
property n_scales

	Returns the number of scales.

	Type

	int

UnifiedAAMCLMFitter

	
class menpofit.unified_aam_clm.UnifiedAAMCLMFitter(unified_aam_clm, algorithm_cls=<class 'menpofit.unified_aam_clm.algorithm.AlternatingRegularisedLandmarkMeanShift'>, n_shape=None, n_appearance=None, sampling=None)

	Bases: MultiScaleParametricFitter

Class defining a Unified AAM - CLM fitter.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step takes place at each scale
and it is not considered as an iteration, thus it is not counted
for the provided max_iters.

	Parameters

	
	unified_aam_clm (UnifiedAAMCLM or subclass) – The trained unified AAM-CLM model.

	algorithm_cls (class, optional) – The unified optimisation algorithm that will get applied. The
possible algorithms are:

	Class

	Method

	ProjectOutRegularisedLandmarkMeanShift

	Project-Out IC + RLMS

	AlternatingRegularisedLandmarkMeanShift

	Alternating IC + RLMS

	n_shape (int or float or list of those or None, optional) – The number of shape components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_shape_components
during training.

	n_appearance (int or float or list of those or None, optional) – The number of appearance components that will be used. If int, then it
defines the exact number of active components. If float, then it
defines the percentage of variance to keep. If int or float, then
the provided value will be applied for all scales. If list, then it
defines a value per scale. If None, then all the available
components will be used. Note that this simply sets the active
components without trimming the unused ones. Also, the available
components may have already been trimmed to max_appearance_components
during training.

	sampling (list of int or ndarray or None) – It defines a sampling mask per scale. If int, then it defines the
sub-sampling step of the sampling mask. If ndarray, then it
explicitly defines the sampling mask. If None, then no
sub-sampling is applied.

	
appearance_reconstructions(appearance_parameters, n_iters_per_scale)

	Method that generates the appearance reconstructions given a set of
appearance parameters. This is to be combined with a
UnifiedAAMCLMResult object, in order to generate the
appearance reconstructions of a fitting procedure.

	Parameters

	
	appearance_parameters (list of (n_params,) ndarray) – A set of appearance parameters per fitting iteration. It can be
retrieved as a property of an UnifiedAAMCLMResult object.

	n_iters_per_scale (list of int) – The number of iterations per scale. This is necessary in order to
figure out which appearance parameters correspond to the model of
each scale. It can be retrieved as a property of a
UnifiedAAMCLMResult object.

	Returns

	appearance_reconstructions (list of menpo.image.Image) – List of the appearance reconstructions that correspond to the
provided parameters.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within an UnifiedAAMCLMResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property response_covariance

	Returns the covariance value of the desired Gaussian response used to
train the ensemble of experts.

	Type

	int

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

	
property unified_aam_clm

	The trained unified AAM-CLM model.

	Type

	UnifiedAAMCLM or subclass

AlternatingRegularisedLandmarkMeanShift

	
class menpofit.unified_aam_clm.AlternatingRegularisedLandmarkMeanShift(aam_interface, expert_ensemble, patch_shape, response_covariance, eps=1e-05, **kwargs)

	Bases: UnifiedAlgorithm

Alternating Inverse Compositional + Regularized Landmark Mean Shift

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, prior=False, a=0.5)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	prior (bool, optional) – If True, use a Gaussian priors over the latent shape and
appearance spaces.
see the reference [1] section 3.1.1 for details.

	a (float, optional) – Ratio of the image noise variance and the shape noise variance.
See [1] section 5 equations (25) & (26) and footnote 6.

	Returns

	fitting_result (UnifiedAAMCLMAlgorithmResult) – The parametric iterative fitting result.

References

	1

	J. Alabort-i-Medina, and S. Zafeiriou. “Unifying holistic and
parts-based deformable model fitting.” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2015.

ProjectOutRegularisedLandmarkMeanShift

	
class menpofit.unified_aam_clm.ProjectOutRegularisedLandmarkMeanShift(aam_interface, expert_ensemble, patch_shape, response_covariance, eps=1e-05, **kwargs)

	Bases: UnifiedAlgorithm

Project-Out Inverse Compositional + Regularized Landmark Mean Shift

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False, prior=False, a=0.5)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	prior (bool, optional) – If True, use a Gaussian priors over the latent shape and
appearance spaces.
see the reference [1] section 3.1.1 for details.

	a (float, optional) – Ratio of the image noise variance and the shape noise variance.
See [1] section 5 equations (25) & (26) and footnote 6.

	Returns

	fitting_result (UnifiedAAMCLMAlgorithmResult) – The parametric iterative fitting result.

References

	1

	J. Alabort-i-Medina, and S. Zafeiriou. “Unifying holistic and
parts-based deformable model fitting.” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2015.

UnifiedAAMCLMResult

	
class menpofit.unified_aam_clm.result.UnifiedAAMCLMResult(results, scales, affine_transforms, scale_transforms, image=None, gt_shape=None)

	Bases: MultiScaleParametricIterativeResult

Class for storing the multi-scale iterative fitting result of a Unified
AAM-CLM. It holds the shapes, shape parameters, appearance parameters and
costs per iteration.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step is not counted in the number
of iterations.

	Parameters

	
	results (list of UnifiedAAMCLMAlgorithmResult) – The list of optimization results per scale.

	scales (list or tuple) – The list of scale values per scale (low to high).

	affine_transforms (list of menpo.transform.Affine) – The list of affine transforms per scale that transform the shapes into
the original image space.

	scale_transforms (list of menpo.shape.Scale) – The list of scaling transforms per scale.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shapes[0].

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property appearance_parameters

	Returns the list of appearance parameters obtained at each iteration
of the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property n_iters_per_scale

	Returns the number of iterations per scale of the fitting process.

	Type

	list of int

	
property n_scales

	Returns the number of scales used during the fitting process.

	Type

	int

	
property reconstructed_initial_shapes

	Returns the result of the reconstruction step that takes place at each
scale before applying the iterative optimisation.

	Type

	list of menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists) and
final_shape.

	Type

	list of menpo.shape.PointCloud

UnifiedAAMCLMAlgorithmResult

	
class menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult(shapes, shape_parameters, appearance_parameters, initial_shape=None, image=None, gt_shape=None, costs=None)

	Bases: ParametricIterativeResult

Class for storing the iterative result of a Unified AAM-CLM optimisation
algorithm.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step is not counted in the number
of iterations.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – The list of shapes per iteration. The first and last members
correspond to the initial and final shapes, respectively.

	shape_parameters (list of (n_shape_parameters,) ndarray) – The list of shape parameters per iteration. The first and last members
correspond to the initial and final shapes, respectively.

	appearance_parameters (list of (n_appearance_parameters,) ndarray) – The list of appearance parameters per iteration. The first and last
members correspond to the initial and final shapes, respectively.

	initial_shape (menpo.shape.PointCloud or None, optional) – The initial shape from which the fitting process started. If
None, then no initial shape is assigned.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	costs (list of float or None, optional) – The list of cost per iteration. If None, then it is assumed that
the cost function cannot be computed for the specific algorithm.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property appearance_parameters

	Returns the list of appearance parameters obtained at each iteration
of the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property reconstructed_initial_shape

	Returns the initial shape’s reconstruction with the shape model that was
used to initialise the iterative optimisation process.

	Type

	menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
reconstructed_initial_shape and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists),
reconstructed_initial_shape and final_shape.

	Type

	list of menpo.shape.PointCloud

menpofit.dlib

Ensemble of Regression Trees (provided by DLib)

Method that employs gradient boosting for learning an ensemble of regression
trees to estimate the landmark positions directly from a sparse subset of
pixel intensities.

	DlibERT

	DlibWrapper

DlibERT

	
class menpofit.dlib.DlibERT(images, group=None, bounding_box_group_glob=None, reference_shape=None, diagonal=None, scales=(0.5, 1.0), n_perturbations=30, n_dlib_perturbations=1, perturb_from_gt_bounding_box=<function noisy_shape_from_bounding_box>, n_iterations=10, feature_padding=0, n_pixel_pairs=400, distance_prior_weighting=0.1, regularisation_weight=0.1, n_split_tests=20, n_trees=500, n_tree_levels=5, verbose=False)

	Bases: MultiScaleNonParametricFitter

Class for training a multi-scale Ensemble of Regression Trees model. This
class uses the implementation provided by the official DLib package
(http://dlib.net/) and makes it multi-scale.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that corresponds to the ground truth shape of each
image. If None and the images only have a single landmark group,
then that is the one that will be used. Note that all the training
images need to have the specified landmark group.

	bounding_box_group_glob (glob or None, optional) – Glob that defines the bounding boxes to be used for training. If
None, then the bounding boxes of the ground truth shapes are used.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for normalising the size of the
training images. The normalization is performed by rescaling all the
training images so that the scale of their ground truth shapes
matches the scale of the reference shape. Note that the reference
shape is rescaled with respect to the diagonal before performing
the normalisation. If None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	n_perturbations (int or None, optional) – The number of perturbations to be generated from each of the bounding
boxes using perturb_from_gt_bounding_box. Note that the total
number of perturbations is n_perturbations * n_dlib_perturbations.

	perturb_from_gt_bounding_box (function, optional) – The function that will be used to generate the perturbations.

	n_dlib_perturbations (int or None or list of those, optional) – The number of perturbations to be generated from the part of DLib. DLib
calls this “oversampling amount”. If list, it must specify a value per
scale. Note that the total number of perturbations is
n_perturbations * n_dlib_perturbations.

	n_iterations (int or list of int, optional) – The number of iterations (cascades) of each level. If list, it must
specify a value per scale. If int, then it defines the total number of
iterations (cascades) over all scales.

	feature_padding (float or list of float, optional) – When we randomly sample the pixels for the feature pool we do so in a
box fit around the provided training landmarks. By default, this box
is the tightest box that contains the landmarks. However, you can
expand or shrink the size of the pixel sampling region by setting a
different value of padding. To explain this precisely, for a padding
of 0 we say that the pixels are sampled from a box of size 1x1. The
padding value is added to each side of the box. So a padding of 0.5
would cause the algorithm to sample pixels from a box that was 2x2,
effectively multiplying the area pixels are sampled from by 4.
Similarly, setting the padding to -0.2 would cause it to sample from
a box 0.6x0.6 in size. If list, it must specify a value per scale.

	n_pixel_pairs (int or list of int, optional) – P parameter from [1]. At each level of the cascade we randomly sample
pixels from the image. These pixels are used to generate features for
the random trees. So in general larger settings of this parameter
give better accuracy but make the algorithm run slower. If list, it
must specify a value per scale.

	distance_prior_weighting (float or list of float, optional) – To decide how to split nodes in the regression trees the algorithm
looks at pairs of pixels in the image. These pixel pairs are sampled
randomly but with a preference for selecting pixels that are near
each other. This parameter controls this “nearness” preference. In
particular, smaller values will make the algorithm prefer to select
pixels close together and larger values will make it care less about
picking nearby pixel pairs. Note that this is the inverse of how it is
defined in [1]. For this object, you should think of
distance_prior_weighting as “the fraction of the bounding box will
we traverse to find a neighboring pixel”. Nominally, this is
normalized between 0 and 1. So reasonable settings are values in the
range (0, 1). If list, it must specify a value per scale.

	regularisation_weight (float or list of float, optional) – Boosting regularization parameter - nu from [1]. Larger values may
cause overfitting but improve performance on training data. If list,
it must specify a value per scale.

	n_split_tests (int or list of int, optional) – When generating the random trees we randomly sample n_split_tests
possible split features at each node and pick the one that gives the
best split. Larger values of this parameter will usually give more
accurate outputs but take longer to train. It is equivalent of S
from [1]. If list, it must specify a value per scale.

	n_trees (int or list of int, optional) – Number of trees created for each cascade. The total number of trees
in the learned model is equal n_trees * n_tree_levels. Equivalent to
K from [1]. If list, it must specify a value per scale.

	n_tree_levels (int or list of int, optional) – The number of levels in the tree (depth of tree). In particular,
there are pow(2, n_tree_levels) leaves in each tree. Equivalent to
F from [1]. If list, it must specify a value per scale.

	verbose (bool, optional) – If True, then the progress of building ERT will be printed.

References

	1

	V. Kazemi, and J. Sullivan. “One millisecond face alignment with
an ensemble of regression trees.” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2014.

	
fit_from_bb(image, bounding_box, gt_shape=None)

	Fits the model to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure
will start.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult) – The result of the fitting procedure.

	
fit_from_shape(image, initial_shape, gt_shape=None)

	Fits the model to an image. Note that it is not possible to
initialise the fitting process from a shape. Thus, this method raises a
warning and calls fit_from_bb with the bounding box of the provided
initial_shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start. Note that the shape won’t actually be used, only its
bounding box.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult) – The result of the fitting procedure.

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

DlibWrapper

	
class menpofit.dlib.DlibWrapper(model)

	Bases: object

Wrapper class for fitting a pre-trained ERT model. Pre-trained models are
provided by the official DLib package (http://dlib.net/).

	Parameters

	model (Path or str) – Path to the pre-trained model.

	
fit_from_bb(image, bounding_box, gt_shape=None)

	Fits the model to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape associated to the image.

	Returns

	fitting_result (Result) – The result of the fitting procedure.

	
fit_from_shape(image, initial_shape, gt_shape=None)

	Fits the model to an image. Note that it is not possible to
initialise the fitting process from a shape. Thus, this method raises a
warning and calls fit_from_bb with the bounding box of the provided
initial_shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start. Note that the shape won’t actually be used, only its
bounding box.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape associated to the image.

	Returns

	fitting_result (Result) – The result of the fitting procedure.

menpofit.lk

Lucas-Kanade Alignment

LK performs alignment (or optical flow estimation) between a template image
and a test image with respect to an affine transformation.

	LucasKanadeFitter

Optimisation Algorithms

	ForwardAdditive

	ForwardCompositional

	InverseCompositional

Residuals

	SSD

	FourierSSD

	ECC

	GradientImages

	GradientCorrelation

Fitting Result

	LucasKanadeResult

	LucasKanadeAlgorithmResult

LucasKanadeFitter

	
class menpofit.lk.LucasKanadeFitter(template, group=None, holistic_features=<function no_op>, diagonal=None, transform=<class 'menpofit.transform.homogeneous.DifferentiableAlignmentAffine'>, scales=(0.5, 1.0), algorithm_cls=<class 'menpofit.lk.algorithm.InverseCompositional'>, residual_cls=<class 'menpofit.lk.residual.SSD'>)

	Bases: MultiScaleNonParametricFitter

Class for defining a multi-scale Lucas-Kanade fitter that performs alignment
with respect to a homogeneous transform. Please see the references for a
basic list of relevant papers.

	Parameters

	
	template (menpo.image.Image) – The template image.

	group (str or None, optional) – The landmark group of the template that will be used as reference
shape. If None and the template only has a single landmark
group, then that is the one that will be used.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape (specified by
group) so that the diagonal of its bounding box matches the
provided value. In other words, this parameter controls the size of
the model at the highest scale. If None, then the reference shape
does not get rescaled.

	scales (tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale.

	transform (subclass of DP and DX, optional) – A differential homogeneous transform object, e.g.
DifferentiableAlignmentAffine.

	algorithm_cls (class, optional) – The Lukas-Kanade optimisation algorithm that will get applied. The
possible algorithms in menpofit.lk.algorithm are:

	Class

	Warp Direction

	Warp Update

	ForwardAdditive

	Forward

	Additive

	ForwardCompositional

	Forward

	Compositional

	InverseCompositional

	Inverse

	

	residual_cls (class subclass, optional) – The residual that will get applied. All possible residuals are:

	Class

	Description

	SSD

	Sum of Squared Differences

	FourierSSD

	Sum of Squared Differences on Fourier domain

	ECC

	Enhanced Correlation Coefficient

	GradientImages

	Image Gradient

	GradientCorrelation

	Gradient Correlation

References

	1

	B.D. Lucas, and T. Kanade, “An iterative image registration
technique with an application to stereo vision”, International Joint
Conference on Artificial Intelligence, pp. 674-679, 1981.

	2

	G.D. Evangelidis, and E.Z. Psarakis. “Parametric Image Alignment
Using Enhanced Correlation Coefficient Maximization”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30(10): 1858-1865, 2008.

	3

	A.B. Ashraf, S. Lucey, and T. Chen. “Fast Image Alignment in the
Fourier Domain”, IEEE Proceedings of International Conference on
Computer Vision and Pattern Recognition, pp. 2480-2487, 2010.

	4

	G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “Robust and
Efficient Parametric Face Alignment”, IEEE Proceedings of International
Conference on Computer Vision (ICCV), pp. 1847-1854, November 2011.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within a LucasKanadeResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

ForwardAdditive

	
class menpofit.lk.ForwardAdditive(template, transform, residual, eps=1e-10)

	Bases: LucasKanade

Forward Additive (FA) Lucas-Kanade algorithm.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	Returns

	fitting_result (LucasKanadeAlgorithmResult) – The parametric iterative fitting result.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within a LucasKanadeResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

ForwardCompositional

	
class menpofit.lk.ForwardCompositional(template, transform, residual, eps=1e-10)

	Bases: LucasKanade

Forward Compositional (FC) Lucas-Kanade algorithm

	Parameters

	
	template (menpo.image.Image or subclass) – The image template.

	transform (subclass of DP and DX, optional) – A differential affine transform object, e.g.
DifferentiableAlignmentAffine.

	residual (class subclass, optional) – The residual that will get applied. All possible residuals are:

	Class

	Description

	SSD

	Sum of Squared Differences

	FourierSSD

	Sum of Squared Differences on Fourier domain

	ECC

	Enhanced Correlation Coefficient

	GradientImages

	Image Gradient

	GradientCorrelation

	Gradient Correlation

	eps (float, optional) – Value for checking the convergence of the optimization.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	Returns

	fitting_result (LucasKanadeAlgorithmResult) – The parametric iterative fitting result.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within a LucasKanadeResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

InverseCompositional

	
class menpofit.lk.InverseCompositional(template, transform, residual, eps=1e-10)

	Bases: LucasKanade

Inverse Compositional (IC) Lucas-Kanade algorithm

	Parameters

	
	template (menpo.image.Image or subclass) – The image template.

	transform (subclass of DP and DX, optional) – A differential affine transform object, e.g.
DifferentiableAlignmentAffine.

	residual (class subclass, optional) – The residual that will get applied. All possible residuals are:

	Class

	Description

	SSD

	Sum of Squared Differences

	FourierSSD

	Sum of Squared Differences on Fourier domain

	ECC

	Enhanced Correlation Coefficient

	GradientImages

	Image Gradient

	GradientCorrelation

	Gradient Correlation

	eps (float, optional) – Value for checking the convergence of the optimization.

	
run(image, initial_shape, gt_shape=None, max_iters=20, return_costs=False)

	Execute the optimization algorithm.

	Parameters

	
	image (menpo.image.Image) – The input test image.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the optimization will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape of the image. It is only needed in order
to get passed in the optimization result object, which has the
ability to compute the fitting error.

	max_iters (int, optional) – The maximum number of iterations. Note that the algorithm may
converge, and thus stop, earlier.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	Returns

	fitting_result (LucasKanadeAlgorithmResult) – The parametric iterative fitting result.

	
warped_images(image, shapes)

	Given an input test image and a list of shapes, it warps the image
into the shapes. This is useful for generating the warped images of a
fitting procedure stored within a LucasKanadeResult.

	Parameters

	
	image (menpo.image.Image or subclass) – The input image to be warped.

	shapes (list of menpo.shape.PointCloud) – The list of shapes in which the image will be warped. The shapes
are obtained during the iterations of a fitting procedure.

	Returns

	warped_images (list of menpo.image.MaskedImage or ndarray) – The warped images.

SSD

	
class menpofit.lk.SSD(kernel=None)

	Bases: Residual

Class for Sum of Squared Differences residual.

References

	1

	B.D. Lucas, and T. Kanade, “An iterative image registration
technique with an application to stereo vision”, International Joint
Conference on Artificial Intelligence, pp. 674-679, 1981.

	
cost_closure()

	Method to compute the optimization cost.

	Returns

	cost (float) – The cost value.

	
classmethod gradient(image, forward=None)

	Calculates the gradients of the given method.

If forward is provided, then the gradients are warped
(as required in the forward additive algorithm)

	Parameters

	
	image (menpo.image.Image) – The image to calculate the gradients for

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	
hessian(sdi, sdi2=None)

	Calculates the Gauss-Newton approximation to the Hessian.

This is abstracted because some residuals expect the Hessian to be
pre-processed. The Gauss-Newton approximation to the Hessian is
defined as:

\[\mathbf{J J^T}\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	sdi2 ((N, n_params) ndarray or None, optional) – The steepest descent images.

	Returns

	H ((n_params, n_params) ndarray) – The approximation to the Hessian

	
steepest_descent_images(image, dW_dp, forward=None)

	Calculates the standard steepest descent images.

Within the forward additive framework this is defined as

\[\nabla I \frac{\partial W}{\partial p}\]

The input image is vectorised (N-pixels) so that masked images can
be handled.

	Parameters

	
	image (menpo.image.Image) – The image to calculate the steepest descent images from, could be
either the template or input image depending on which framework is
used.

	dW_dp (ndarray) – The Jacobian of the warp.

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	Returns

	VT_dW_dp ((N, n_params) ndarray) – The steepest descent images

	
steepest_descent_update(sdi, image, template)

	Calculates the steepest descent parameter updates.

These are defined, for the forward additive algorithm, as:

\[\sum_x [\nabla I \frac{\partial W}{\partial p}]^T [T(x) - I(W(x;p))]\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	image (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	template (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	Returns

	sd_delta_p ((n_params,) ndarray) – The steepest descent parameter updates.

FourierSSD

	
class menpofit.lk.FourierSSD(kernel=None)

	Bases: Residual

Class for Sum of Squared Differences on the Fourier domain residual.

References

	1

	A.B. Ashraf, S. Lucey, and T. Chen. “Fast Image Alignment in the
Fourier Domain”, IEEE Proceedings of International Conference on
Computer Vision and Pattern Recognition, pp. 2480-2487, 2010.

	
cost_closure()

	Method to compute the optimization cost.

	Returns

	cost (float) – The cost value.

	
classmethod gradient(image, forward=None)

	Calculates the gradients of the given method.

If forward is provided, then the gradients are warped
(as required in the forward additive algorithm)

	Parameters

	
	image (menpo.image.Image) – The image to calculate the gradients for

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	
hessian(sdi, sdi2=None)

	Calculates the Gauss-Newton approximation to the Hessian.

This is abstracted because some residuals expect the Hessian to be
pre-processed. The Gauss-Newton approximation to the Hessian is
defined as:

\[\mathbf{J J^T}\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	sdi2 ((N, n_params) ndarray or None, optional) – The steepest descent images.

	Returns

	H ((n_params, n_params) ndarray) – The approximation to the Hessian

	
steepest_descent_images(image, dW_dp, forward=None)

	Calculates the standard steepest descent images.

Within the forward additive framework this is defined as

\[\nabla I \frac{\partial W}{\partial p}\]

The input image is vectorised (N-pixels) so that masked images can
be handled.

	Parameters

	
	image (menpo.image.Image) – The image to calculate the steepest descent images from, could be
either the template or input image depending on which framework is
used.

	dW_dp (ndarray) – The Jacobian of the warp.

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	Returns

	VT_dW_dp ((N, n_params) ndarray) – The steepest descent images

	
steepest_descent_update(sdi, image, template)

	Calculates the steepest descent parameter updates.

These are defined, for the forward additive algorithm, as:

\[\sum_x [\nabla I \frac{\partial W}{\partial p}]^T [T(x) - I(W(x;p))]\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	image (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	template (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	Returns

	sd_delta_p ((n_params,) ndarray) – The steepest descent parameter updates.

ECC

	
class menpofit.lk.ECC

	Bases: Residual

Class for Enhanced Correlation Coefficient residual.

References

	1

	G.D. Evangelidis, and E.Z. Psarakis. “Parametric Image Alignment
Using Enhanced Correlation Coefficient Maximization”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30(10): 1858-1865, 2008.

	
cost_closure()

	Method to compute the optimization cost.

	Returns

	cost (float) – The cost value.

	
classmethod gradient(image, forward=None)

	Calculates the gradients of the given method.

If forward is provided, then the gradients are warped
(as required in the forward additive algorithm)

	Parameters

	
	image (menpo.image.Image) – The image to calculate the gradients for

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	
hessian(sdi, sdi2=None)

	Calculates the Gauss-Newton approximation to the Hessian.

This is abstracted because some residuals expect the Hessian to be
pre-processed. The Gauss-Newton approximation to the Hessian is
defined as:

\[\mathbf{J J^T}\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	sdi2 ((N, n_params) ndarray or None, optional) – The steepest descent images.

	Returns

	H ((n_params, n_params) ndarray) – The approximation to the Hessian

	
steepest_descent_images(image, dW_dp, forward=None)

	Calculates the standard steepest descent images.

Within the forward additive framework this is defined as

\[\nabla I \frac{\partial W}{\partial p}\]

The input image is vectorised (N-pixels) so that masked images can
be handled.

	Parameters

	
	image (menpo.image.Image) – The image to calculate the steepest descent images from, could be
either the template or input image depending on which framework is
used.

	dW_dp (ndarray) – The Jacobian of the warp.

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	Returns

	VT_dW_dp ((N, n_params) ndarray) – The steepest descent images

	
steepest_descent_update(sdi, image, template)

	Calculates the steepest descent parameter updates.

These are defined, for the forward additive algorithm, as:

\[\sum_x [\nabla I \frac{\partial W}{\partial p}]^T [T(x) - I(W(x;p))]\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	image (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	template (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	Returns

	sd_delta_p ((n_params,) ndarray) – The steepest descent parameter updates.

GradientImages

	
class menpofit.lk.GradientImages

	Bases: Residual

Class for Gradient Images residual.

References

	1

	G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “Robust and
Efficient Parametric Face Alignment”, IEEE Proceedings of International
Conference on Computer Vision (ICCV), pp. 1847-1854, November 2011.

	
cost_closure()

	Method to compute the optimization cost.

	Returns

	cost (float) – The cost value.

	
classmethod gradient(image, forward=None)

	Calculates the gradients of the given method.

If forward is provided, then the gradients are warped
(as required in the forward additive algorithm)

	Parameters

	
	image (menpo.image.Image) – The image to calculate the gradients for

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	
hessian(sdi, sdi2=None)

	Calculates the Gauss-Newton approximation to the Hessian.

This is abstracted because some residuals expect the Hessian to be
pre-processed. The Gauss-Newton approximation to the Hessian is
defined as:

\[\mathbf{J J^T}\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	sdi2 ((N, n_params) ndarray or None, optional) – The steepest descent images.

	Returns

	H ((n_params, n_params) ndarray) – The approximation to the Hessian

	
steepest_descent_images(image, dW_dp, forward=None)

	Calculates the standard steepest descent images.

Within the forward additive framework this is defined as

\[\nabla I \frac{\partial W}{\partial p}\]

The input image is vectorised (N-pixels) so that masked images can
be handled.

	Parameters

	
	image (menpo.image.Image) – The image to calculate the steepest descent images from, could be
either the template or input image depending on which framework is
used.

	dW_dp (ndarray) – The Jacobian of the warp.

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	Returns

	VT_dW_dp ((N, n_params) ndarray) – The steepest descent images

	
steepest_descent_update(sdi, image, template)

	Calculates the steepest descent parameter updates.

These are defined, for the forward additive algorithm, as:

\[\sum_x [\nabla I \frac{\partial W}{\partial p}]^T [T(x) - I(W(x;p))]\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	image (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	template (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	Returns

	sd_delta_p ((n_params,) ndarray) – The steepest descent parameter updates.

GradientCorrelation

	
class menpofit.lk.GradientCorrelation

	Bases: Residual

Class for Gradient Correlation residual.

References

	1

	G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “Robust and
Efficient Parametric Face Alignment”, IEEE Proceedings of International
Conference on Computer Vision (ICCV), pp. 1847-1854, November 2011.

	
cost_closure()

	Method to compute the optimization cost.

	Returns

	cost (float) – The cost value.

	
classmethod gradient(image, forward=None)

	Calculates the gradients of the given method.

If forward is provided, then the gradients are warped
(as required in the forward additive algorithm)

	Parameters

	
	image (menpo.image.Image) – The image to calculate the gradients for

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	
hessian(sdi, sdi2=None)

	Calculates the Gauss-Newton approximation to the Hessian.

This is abstracted because some residuals expect the Hessian to be
pre-processed. The Gauss-Newton approximation to the Hessian is
defined as:

\[\mathbf{J J^T}\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	sdi2 ((N, n_params) ndarray or None, optional) – The steepest descent images.

	Returns

	H ((n_params, n_params) ndarray) – The approximation to the Hessian

	
steepest_descent_images(image, dW_dp, forward=None)

	Calculates the standard steepest descent images.

Within the forward additive framework this is defined as

\[\nabla I \frac{\partial W}{\partial p}\]

The input image is vectorised (N-pixels) so that masked images can
be handled.

	Parameters

	
	image (menpo.image.Image) – The image to calculate the steepest descent images from, could be
either the template or input image depending on which framework is
used.

	dW_dp (ndarray) – The Jacobian of the warp.

	forward (tuple or None, optional) – A tuple containing the extra weights required for the function
warp (which should be passed as a function handle), i.e.
(`menpo.image.Image`, `menpo.transform.AlignableTransform>`). If
None, then the optimization algorithm is assumed to be inverse.

	Returns

	VT_dW_dp ((N, n_params) ndarray) – The steepest descent images

	
steepest_descent_update(sdi, image, template)

	Calculates the steepest descent parameter updates.

These are defined, for the forward additive algorithm, as:

\[\sum_x [\nabla I \frac{\partial W}{\partial p}]^T [T(x) - I(W(x;p))]\]

	Parameters

	
	sdi ((N, n_params) ndarray) – The steepest descent images.

	image (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	template (menpo.image.Image) – Either the warped image or the template (depending on the framework)

	Returns

	sd_delta_p ((n_params,) ndarray) – The steepest descent parameter updates.

LucasKanadeResult

	
class menpofit.lk.result.LucasKanadeResult(results, scales, affine_transforms, scale_transforms, image=None, gt_shape=None)

	Bases: MultiScaleParametricIterativeResult

Class for storing the multi-scale iterative fitting result of an ATM. It
holds the shapes, shape parameters and costs per iteration.

	Parameters

	
	results (list of ATMAlgorithmResult) – The list of optimization results per scale.

	scales (list or tuple) – The list of scale values per scale (low to high).

	affine_transforms (list of menpo.transform.Affine) – The list of affine transforms per scale that transform the shapes into
the original image space.

	scale_transforms (list of menpo.shape.Scale) – The list of scaling transforms per scale.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shapes[0].

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property homogeneous_parameters

	Returns the list of parameters of the homogeneous transform
obtained at each iteration of the fitting process. The list
includes the parameters of the initial_shape (if it exists) and
final_shape.

	Type

	list of (n_params,) ndarray

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property n_iters_per_scale

	Returns the number of iterations per scale of the fitting process.

	Type

	list of int

	
property n_scales

	Returns the number of scales used during the fitting process.

	Type

	int

	
property reconstructed_initial_shapes

	Returns the result of the reconstruction step that takes place at each
scale before applying the iterative optimisation.

	Type

	list of menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists) and
final_shape.

	Type

	list of menpo.shape.PointCloud

LucasKanadeAlgorithmResult

	
class menpofit.lk.result.LucasKanadeAlgorithmResult(shapes, homogeneous_parameters, initial_shape=None, image=None, gt_shape=None, costs=None)

	Bases: ParametricIterativeResult

Class for storing the iterative result of a Lucas-Kanade Image Alignment
optimization algorithm.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – The list of shapes per iteration. The first and last members
correspond to the initial and final shapes, respectively.

	homogeneous_parameters (list of (n_parameters,) ndarray) – The list of parameters of the homogeneous transform per iteration.
The first and last members correspond to the initial and final
shapes, respectively.

	initial_shape (menpo.shape.PointCloud or None, optional) – The initial shape from which the fitting process started. If
None, then no initial shape is assigned.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	costs (list of float or None, optional) – The list of cost per iteration. If None, then it is assumed that
the cost function cannot be computed for the specific algorithm.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property homogeneous_parameters

	Returns the list of parameters of the homogeneous transform
obtained at each iteration of the fitting process. The list
includes the parameters of the initial_shape (if it exists) and
final_shape.

	Type

	list of (n_params,) ndarray

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property reconstructed_initial_shape

	Returns the initial shape’s reconstruction with the shape model that was
used to initialise the iterative optimisation process.

	Type

	menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
reconstructed_initial_shape and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists),
reconstructed_initial_shape and final_shape.

	Type

	list of menpo.shape.PointCloud

menpofit.sdm

Supervised Descent Method

SDM is a cascaded-regression deformable model that learns average descent
directions that minimise a given cost function.

	SupervisedDescentFitter

Pre-defined Models

Models with pre-defined algorithms that are commonly-used in literature.

	SDM

	RegularizedSDM

Non-Parametric Algorithms

The cascaded regression of these algorithms is performed between landmark
coordinates and image-based features.

	NonParametricNewton

	NonParametricGaussNewton

	NonParametricPCRRegression

	NonParametricOptimalRegression

	NonParametricOPPRegression

Parametric Shape Algorithms

The cascaded regression of these algorithms is performed between the
parameters of a statistical shape model and image-based features.

	ParametricShapeNewton

	ParametricShapeGaussNewton

	ParametricShapePCRRegression

	ParametricShapeOptimalRegression

	ParametricShapeOPPRegression

Parametric Appearance Algorithms

The cascaded regression of these algorithms is performed between landmark
coordinates and features that are based on a statistical parametric
appearance model.

	ParametricAppearanceProjectOutNewton

	ParametricAppearanceProjectOutGuassNewton

	ParametricAppearanceMeanTemplateNewton

	ParametricAppearanceMeanTemplateGuassNewton

	ParametricAppearanceWeightsNewton

	ParametricAppearanceWeightsGuassNewton

Fully Parametric Algorithms

The cascaded regression is performed between the parameters of a statistical
shape model and features that are based on a statistical parametric
appearance model.

	FullyParametricProjectOutNewton

	FullyParametricProjectOutGaussNewton

	FullyParametricMeanTemplateNewton

	FullyParametricWeightsNewton

	FullyParametricProjectOutOPP

SupervisedDescentFitter

	
class menpofit.sdm.SupervisedDescentFitter(images, group=None, bounding_box_group_glob=None, sd_algorithm_cls=None, reference_shape=None, diagonal=None, holistic_features=<function no_op>, patch_features=<function no_op>, patch_shape=(17, 17), scales=(0.5, 1.0), n_iterations=3, n_perturbations=30, perturb_from_gt_bounding_box=<function noisy_shape_from_bounding_box>, batch_size=None, verbose=False)

	Bases: MultiScaleNonParametricFitter

Class for training a multi-scale Supervised Descent model.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that corresponds to the ground truth shape of each
image. If None and the images only have a single landmark group,
then that is the one that will be used. Note that all the training
images need to have the specified landmark group.

	bounding_box_group_glob (glob or None, optional) – Glob that defines the bounding boxes to be used for training. If
None, then the bounding boxes of the ground truth shapes are used.

	sd_algorithm_cls (class, optional) – The Supervised Descent algorithm to be used. The possible algorithms
are are separated in the following four categories:

Non-parametric:

	Class

	Regression

	NonParametricNewton

	IRLRegression

	NonParametricGaussNewton

	IIRLRegression

	NonParametricPCRRegression

	PCRRegression

	NonParametricOptimalRegression

	OptimalLinearRegression

	NonParametricOPPRegression

	OPPRegression

Parametric shape:

	Class

	Regression

	ParametricShapeNewton

	IRLRegression

	ParametricShapeGaussNewton

	IIRLRegression

	ParametricShapePCRRegression

	PCRRegression

	ParametricShapeOptimalRegression

	OptimalLinearRegression

	ParametricShapeOPPRegression

	ParametricShapeOPPRegression

Parametric appearance:

	Class

	Regression

	ParametricAppearanceProjectOutNewton

	IRLRegression

	ParametricAppearanceProjectOutGuassNewton

	IIRLRegression

	ParametricAppearanceMeanTemplateNewton

	IRLRegression

	ParametricAppearanceMeanTemplateGuassNewton

	IIRLRegression

	ParametricAppearanceWeightsNewton

	IRLRegression

	ParametricAppearanceWeightsGuassNewton

	IIRLRegression

Parametric shape and appearance:

	Class

	Regression

	FullyParametricProjectOutNewton

	IRLRegression

	FullyParametricProjectOutGaussNewton

	IIRLRegression

	FullyParametricMeanTemplateNewton

	IRLRegression

	FullyParametricWeightsNewton

	IRLRegression

	FullyParametricProjectOutOPP

	OPPRegression

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for normalising the size of the
training images. The normalization is performed by rescaling all the
training images so that the scale of their ground truth shapes
matches the scale of the reference shape. Note that the reference
shape is rescaled with respect to the diagonal before performing
the normalisation. If None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	patch_features (closure or list of closure, optional) – The features that will be extracted from the patches of the training
images. Note that, as opposed to holistic_features, these features
are extracted after extracting the patches. If list, then it must
define a feature function per scale. Please refer to menpo.feature
and menpofit.feature for a list of potential features.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches to be extracted. If a list is provided,
then it defines a patch shape per scale.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	n_iterations (int or list of int, optional) – The number of iterations (cascades) of each level. If list, it must
specify a value per scale. If int, then it defines the total number of
iterations (cascades) over all scales.

	n_perturbations (int, optional) – The number of perturbations to be generated from each of the bounding
boxes using perturb_from_gt_bounding_box.

	perturb_from_gt_bounding_box (callable, optional) – The function that will be used to generate the perturbations from each
of the bounding boxes.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	verbose (bool, optional) – If True, then the progress of the training will be printed.

References

	1

	X. Xiong, and F. De la Torre. “Supervised Descent Method and its
applications to face alignment”, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

	2

	P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar.
“Localizing parts of faces using a consensus of exemplars”, Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
increment(images, group=None, bounding_box_group_glob=None, verbose=False, batch_size=None)

	Method to increment the trained SDM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that corresponds to the ground truth shape of
each image. If None and the images only have a single
landmark group, then that is the one that will be used. Note that
all the training images need to have the specified landmark group.

	bounding_box_group_glob (glob or None, optional) – Glob that defines the bounding boxes to be used for training. If
None, then the bounding boxes of the ground truth shapes are
used.

	verbose (bool, optional) – If True, then the progress of training will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

SDM

	
menpofit.sdm.SDM(images, group=None, bounding_box_group_glob=None, reference_shape=None, diagonal=None, holistic_features=<function no_op>, patch_features=<function no_op>, patch_shape=(17, 17), scales=(0.5, 1.0), n_iterations=3, n_perturbations=30, perturb_from_gt_bounding_box=<function noisy_shape_from_bounding_box>, batch_size=None, verbose=False)

	Class for training a non-parametric multi-scale Supervised Descent model
using NonParametricNewton.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that corresponds to the ground truth shape of each
image. If None and the images only have a single landmark group,
then that is the one that will be used. Note that all the training
images need to have the specified landmark group.

	bounding_box_group_glob (glob or None, optional) – Glob that defines the bounding boxes to be used for training. If
None, then the bounding boxes of the ground truth shapes are used.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for normalising the size of the
training images. The normalization is performed by rescaling all the
training images so that the scale of their ground truth shapes
matches the scale of the reference shape. Note that the reference
shape is rescaled with respect to the diagonal before performing
the normalisation. If None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	patch_features (closure or list of closure, optional) – The features that will be extracted from the patches of the training
images. Note that, as opposed to holistic_features, these features
are extracted after extracting the patches. If list, then it must
define a feature function per scale. Please refer to menpo.feature
and menpofit.feature for a list of potential features.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches to be extracted. If a list is provided,
then it defines a patch shape per scale.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	n_iterations (int or list of int, optional) – The number of iterations (cascades) of each level. If list, it must
specify a value per scale. If int, then it defines the total number of
iterations (cascades) over all scales.

	n_perturbations (int, optional) – The number of perturbations to be generated from each of the bounding
boxes using perturb_from_gt_bounding_box.

	perturb_from_gt_bounding_box (callable, optional) – The function that will be used to generate the perturbations from each
of the bounding boxes.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	verbose (bool, optional) – If True, then the progress of the training will be printed.

References

	1

	X. Xiong, and F. De la Torre. “Supervised Descent Method and its
applications to face alignment”, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

RegularizedSDM

	
class menpofit.sdm.RegularizedSDM(images, group=None, bounding_box_group_glob=None, alpha=0.0001, reference_shape=None, diagonal=None, holistic_features=<function no_op>, patch_features=<function no_op>, patch_shape=(17, 17), scales=(0.5, 1.0), n_iterations=6, n_perturbations=30, perturb_from_gt_bounding_box=<function noisy_shape_from_bounding_box>, batch_size=None, verbose=False)

	Bases: SupervisedDescentFitter

Class for training a non-parametric multi-scale Supervised Descent model
using NonParametricNewton with regularization.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that corresponds to the ground truth shape of each
image. If None and the images only have a single landmark group,
then that is the one that will be used. Note that all the training
images need to have the specified landmark group.

	bounding_box_group_glob (glob or None, optional) – Glob that defines the bounding boxes to be used for training. If
None, then the bounding boxes of the ground truth shapes are used.

	alpha (float, optional) – The regression regularization parameter.

	reference_shape (menpo.shape.PointCloud or None, optional) – The reference shape that will be used for normalising the size of the
training images. The normalization is performed by rescaling all the
training images so that the scale of their ground truth shapes
matches the scale of the reference shape. Note that the reference
shape is rescaled with respect to the diagonal before performing
the normalisation. If None, then the mean shape will be used.

	diagonal (int or None, optional) – This parameter is used to rescale the reference shape so that the
diagonal of its bounding box matches the provided value. In other
words, this parameter controls the size of the model at the highest
scale. If None, then the reference shape does not get rescaled.

	holistic_features (closure or list of closure, optional) – The features that will be extracted from the training images. Note
that the features are extracted before warping the images to the
reference shape. If list, then it must define a feature function per
scale. Please refer to menpo.feature for a list of potential features.

	patch_features (closure or list of closure, optional) – The features that will be extracted from the patches of the training
images. Note that, as opposed to holistic_features, these features
are extracted after extracting the patches. If list, then it must
define a feature function per scale. Please refer to menpo.feature
and menpofit.feature for a list of potential features.

	patch_shape ((int, int) or list of (int, int), optional) – The shape of the patches to be extracted. If a list is provided,
then it defines a patch shape per scale.

	scales (float or tuple of float, optional) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale. If float, then a single scale is
assumed.

	n_iterations (int or list of int, optional) – The number of iterations (cascades) of each level. If list, it must
specify a value per scale. If int, then it defines the total number of
iterations (cascades) over all scales.

	n_perturbations (int, optional) – The number of perturbations to be generated from each of the bounding
boxes using perturb_from_gt_bounding_box.

	perturb_from_gt_bounding_box (callable, optional) – The function that will be used to generate the perturbations from each
of the bounding boxes.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	verbose (bool, optional) – If True, then the progress of the training will be printed.

References

	1

	X. Xiong, and F. De la Torre. “Supervised Descent Method and its
applications to face alignment”, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
increment(images, group=None, bounding_box_group_glob=None, verbose=False, batch_size=None)

	Method to increment the trained SDM with a new set of training images.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	group (str or None, optional) – The landmark group that corresponds to the ground truth shape of
each image. If None and the images only have a single
landmark group, then that is the one that will be used. Note that
all the training images need to have the specified landmark group.

	bounding_box_group_glob (glob or None, optional) – Glob that defines the bounding boxes to be used for training. If
None, then the bounding boxes of the ground truth shapes are
used.

	verbose (bool, optional) – If True, then the progress of training will be printed.

	batch_size (int or None, optional) – If an int is provided, then the training is performed in an
incremental fashion on image batches of size equal to the provided
value. If None, then the training is performed directly on the
all the images.

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

NonParametricNewton

	
class menpofit.sdm.NonParametricNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: NonParametricSDAlgorithm

Class for training a non-parametric cascaded-regression algorithm using
Incremental Regularized Linear Regression (IRLRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (class : menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

NonParametricGaussNewton

	
class menpofit.sdm.NonParametricGaussNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True, alpha2=0)

	Bases: NonParametricSDAlgorithm

Class for training a non-parametric cascaded-regression algorithm using
Indirect Incremental Regularized Linear Regression (IIRLRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	alpha2 (float, optional) – The regularization parameter of the Hessian matrix.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (class : menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

NonParametricPCRRegression

	
class menpofit.sdm.NonParametricPCRRegression(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, variance=None, bias=True)

	Bases: NonParametricSDAlgorithm

Class for training a non-parametric cascaded-regression algorithm using
Principal Component Regression (PCRRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	variance (float or None, optional) – The SVD variance.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (class : menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

NonParametricOptimalRegression

	
class menpofit.sdm.NonParametricOptimalRegression(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, variance=None, bias=True)

	Bases: NonParametricSDAlgorithm

Class for training a non-parametric cascaded-regression algorithm using
Multivariate Linear Regression with optimal reconstructions
(OptimalLinearRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	variance (float or None, optional) – The SVD variance.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (class : menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

NonParametricOPPRegression

	
class menpofit.sdm.NonParametricOPPRegression(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, compute_error=<function euclidean_bb_normalised_error>, bias=True)

	Bases: NonParametricSDAlgorithm

Class for training a non-parametric cascaded-regression algorithm using
Multivariate Linear Regression with Orthogonal Procrustes Problem
reconstructions (OPPRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (class : menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricShapeNewton

	
class menpofit.sdm.ParametricShapeNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: ParametricShapeSDAlgorithm

Class for training a cascaded-regression algorithm that employs a
parametric shape model using Incremental Regularized Linear Regression
(IRLRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricShapeGaussNewton

	
class menpofit.sdm.ParametricShapeGaussNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True, alpha2=0)

	Bases: ParametricShapeSDAlgorithm

Class for training a cascaded-regression algorithm that employs a
parametric shape model using Indirect Incremental Regularized Linear
Regression (IIRLRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	alpha2 (float, optional) – The regularization parameter of the Hessian matrix.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricShapePCRRegression

	
class menpofit.sdm.ParametricShapePCRRegression(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, compute_error=<function euclidean_bb_normalised_error>, variance=None, bias=True)

	Bases: ParametricShapeSDAlgorithm

Class for training a cascaded-regression algorithm that employs a parametric
shape model using Principal Component Regression (PCRRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	variance (float or None, optional) – The SVD variance.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	Raises

	ValueError – variance must be set to a number between 0 and 1

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricShapeOptimalRegression

	
class menpofit.sdm.ParametricShapeOptimalRegression(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, compute_error=<function euclidean_bb_normalised_error>, variance=None, bias=True)

	Bases: ParametricShapeSDAlgorithm

Class for training a cascaded-regression algorithm that employs a parametric
shape model using Multivariate Linear Regression with optimal
reconstructions (OptimalLinearRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	variance (float or None, optional) – The SVD variance.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricShapeOPPRegression

	
class menpofit.sdm.ParametricShapeOPPRegression(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, compute_error=<function euclidean_bb_normalised_error>, whiten=False, bias=True)

	Bases: ParametricShapeSDAlgorithm

Class for training a cascaded-regression algorithm that employs a parametric
shape model using Multivariate Linear Regression with Orthogonal Procrustes
Problem reconstructions (OPPRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	whiten (bool, optional) – Whether to use a whitened PCA model.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricAppearanceProjectOutNewton

	
class menpofit.sdm.ParametricAppearanceProjectOutNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: ParametricAppearanceNewton

Class for training a cascaded-regression Newton algorithm that employs a
parametric appearance model using Incremental Regularized Linear
Regression (IRLRegression). The algorithm uses the projected-out
appearance vectors as features in the regression.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricAppearanceProjectOutGuassNewton

	
class menpofit.sdm.ParametricAppearanceProjectOutGuassNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True, alpha2=0)

	Bases: ParametricAppearanceGaussNewton

Class for training a cascaded-regression Gauss-Newton algorithm that employs
a parametric appearance model using Indirect Incremental Regularized Linear
Regression (IIRLRegression). The algorithm uses the projected-out
appearance vectors as features in the regression.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricAppearanceMeanTemplateNewton

	
class menpofit.sdm.ParametricAppearanceMeanTemplateNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: ParametricAppearanceNewton

Class for training a cascaded-regression Newton algorithm that employs a
parametric appearance model using Incremental Regularized Linear
Regression (IRLRegression). The algorithm uses the centered
appearance vectors as features in the regression.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricAppearanceMeanTemplateGuassNewton

	
class menpofit.sdm.ParametricAppearanceMeanTemplateGuassNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True, alpha2=0)

	Bases: ParametricAppearanceGaussNewton

Class for training a cascaded-regression Gauss-Newton algorithm that employs
a parametric appearance model using Indirect Incremental Regularized Linear
Regression (IIRLRegression). The algorithm uses the centered
appearance vectors as features in the regression.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricAppearanceWeightsNewton

	
class menpofit.sdm.ParametricAppearanceWeightsNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: ParametricAppearanceNewton

Class for training a cascaded-regression Newton algorithm that employs a
parametric appearance model using Incremental Regularized Linear
Regression (IRLRegression). The algorithm uses the projection
weights of the appearance vectors as features in the regression.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

ParametricAppearanceWeightsGuassNewton

	
class menpofit.sdm.ParametricAppearanceWeightsGuassNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True, alpha2=0)

	Bases: ParametricAppearanceGaussNewton

Class for training a cascaded-regression Gauss-Newton algorithm that employs
a parametric appearance model using Indirect Incremental Regularized Linear
Regression (IIRLRegression). The algorithm uses the projection
weights of the appearance vectors as features in the regression.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (NonParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

FullyParametricProjectOutNewton

	
class menpofit.sdm.FullyParametricProjectOutNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: ParametricAppearanceProjectOut

Class for training a cascaded-regression algorithm that employs
parametric shape and appearance models using Incremental Regularized Linear
Regression (IRLRegression). The algorithm uses the projected-out
appearance vectors as features in the regression.

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	appearance_model_cls (menpo.model.PCAVectorModel or subclass) – The class to be used for building the appearance model.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

FullyParametricProjectOutGaussNewton

	
class menpofit.sdm.FullyParametricProjectOutGaussNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True, alpha2=0)

	Bases: ParametricAppearanceProjectOut

Class for training a cascaded-regression algorithm that employs parametric
shape and appearance models using Indirect Incremental Regularized Linear
Regression (IIRLRegression). The algorithm uses the projected-out
appearance vectors as features in the regression.

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	appearance_model_cls (menpo.model.PCAVectorModel or subclass) – The class to be used for building the appearance model.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	alpha2 (float, optional) – The regularization parameter of the Hessian matrix.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

FullyParametricMeanTemplateNewton

	
class menpofit.sdm.FullyParametricMeanTemplateNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: ParametricAppearanceMeanTemplate

Class for training a cascaded-regression algorithm that employs parametric
shape and appearance models using Incremental Regularized Linear
Regression (IRLRegression). The algorithm uses the centered
appearance vectors as features in the regression.

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	appearance_model_cls (menpo.model.PCAVectorModel or subclass) – The class to be used for building the appearance model.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

FullyParametricWeightsNewton

	
class menpofit.sdm.FullyParametricWeightsNewton(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, alpha=0, bias=True)

	Bases: ParametricAppearanceWeights

Class for training a cascaded-regression algorithm that employs parametric
shape and appearance models using Incremental Regularized Linear
Regression (IRLRegression). The algorithm uses the projection
weights of the appearance vectors as features in the regression.

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	appearance_model_cls (menpo.model.PCAVectorModel or subclass) – The class to be used for building the appearance model.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

FullyParametricProjectOutOPP

	
class menpofit.sdm.FullyParametricProjectOutOPP(patch_features=<function no_op>, patch_shape=(17, 17), n_iterations=3, shape_model_cls=<class 'menpofit.modelinstance.OrthoPDM'>, appearance_model_cls=<class 'menpo.model.pca.PCAVectorModel'>, compute_error=<function euclidean_bb_normalised_error>, bias=True)

	Bases: ParametricAppearanceProjectOut

Class for training a cascaded-regression algorithm that employs parametric
shape and appearance models using Multivariate Linear Regression with
Orthogonal Procrustes Problem reconstructions (OPPRegression).

	Parameters

	
	patch_features (callable, optional) – The features to be extracted from the patches of an image.

	patch_shape ((int, int), optional) – The shape of the extracted patches.

	n_iterations (int, optional) – The number of iterations (cascades).

	shape_model_cls (subclass of PDM, optional) – The class to be used for building the shape model. The most common
choice is OrthoPDM.

	appearance_model_cls (menpo.model.PCAVectorModel or subclass) – The class to be used for building the appearance model.

	compute_error (callable, optional) – The function to be used for computing the fitting error when training
each cascade.

	bias (bool, optional) – Flag that controls whether to use a bias term.

	
increment(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to increment the model with the set of current shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

	
run(image, initial_shape, gt_shape=None, return_costs=False, **kwargs)

	Run the algorithm to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape from which the fitting procedure will start.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that this
argument currently has no effect and will raise a warning if set
to ``True``. This is because it is not possible to evaluate the
cost function of this algorithm.

	Returns

	fitting_result (ParametricIterativeResult) – The result of the fitting procedure.

	
train(images, gt_shapes, current_shapes, prefix='', verbose=False)

	Method to train the model given a set of initial shapes.

	Parameters

	
	images (list of menpo.image.Image) – The list of training images.

	gt_shapes (list of menpo.shape.PointCloud) – The list of ground truth shapes that correspond to the images.

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images,
which will be used as initial shapes.

	prefix (str, optional) – The prefix to use when printing information.

	verbose (bool, optional) – If True, then information is printed during training.

	Returns

	current_shapes (list of menpo.shape.PointCloud) – The list of current shapes that correspond to the images.

menpofit.builder

Building Functions

Collection of functions that are commonly-used by most deformable model builders.

	align_shapes

	build_patch_reference_frame

	build_reference_frame

	compute_features

	compute_reference_shape

	densify_shapes

	extract_patches

	normalization_wrt_reference_shape

	rescale_images_to_reference_shape

	scale_images

	warp_images

Warnings

	MenpoFitBuilderWarning

	MenpoFitModelBuilderWarning

align_shapes

	
menpofit.builder.align_shapes(shapes)

	Function that aligns a set of shapes by applying Generalized Procrustes
Analysis.

	Parameters

	shapes (list of menpo.shape.PointCloud) – The input shapes.

	Returns

	aligned_shapes (list of menpo.shape.PointCloud) – The list of aligned shapes.

build_patch_reference_frame

	
menpofit.builder.build_patch_reference_frame(landmarks, boundary=3, group='source', patch_shape=(17, 17))

	Builds a patch-based reference frame from a particular set of landmarks.

	Parameters

	
	landmarks (menpo.shape.PointCloud) – The landmarks that will be used to build the reference frame.

	boundary (int, optional) – The number of pixels to be left as a safe margin on the boundaries
of the reference frame (has potential effects on the gradient
computation).

	group (str, optional) – Group that will be assigned to the provided set of landmarks on the
reference frame.

	patch_shape ((int, int), optional) – The shape of the patches.

	Returns

	patch_based_reference_frame (menpo.image.MaskedImage) – The patch-based reference frame.

build_reference_frame

	
menpofit.builder.build_reference_frame(landmarks, boundary=3, group='source')

	Builds a reference frame from a particular set of landmarks.

	Parameters

	
	landmarks (menpo.shape.PointCloud) – The landmarks that will be used to build the reference frame.

	boundary (int, optional) – The number of pixels to be left as a safe margin on the boundaries
of the reference frame (has potential effects on the gradient
computation).

	group (str, optional) – Group that will be assigned to the provided set of landmarks on the
reference frame.

	Returns

	reference_frame (manpo.image.MaskedImage) – The reference frame.

compute_features

	
menpofit.builder.compute_features(images, features, prefix='', verbose=False)

	Function that extracts features from a list of images.

	Parameters

	
	images (list of menpo.image.Image) – The set of images.

	features (callable) – The features extraction function. Please refer to menpo.feature and
menpofit.feature.

	prefix (str) – The prefix of the printed information.

	verbose (bool, Optional) – Flag that controls information and progress printing.

	Returns

	feature_images (list of menpo.image.Image) – The list of feature images.

compute_reference_shape

	
menpofit.builder.compute_reference_shape(shapes, diagonal, verbose=False)

	Function that computes the reference shape as the mean shape of the provided
shapes.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – The set of shapes from which to build the reference shape.

	diagonal (int or None) – If int, it ensures that the mean shape is scaled so that the diagonal
of the bounding box containing it matches the provided value.
If None, then the mean shape is not rescaled.

	verbose (bool, optional) – If True, then progress information is printed.

	Returns

	reference_shape (menpo.shape.PointCloud) – The reference shape.

densify_shapes

	
menpofit.builder.densify_shapes(shapes, reference_frame, transform)

	Function that densifies a set of sparse shapes given a reference frame.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – The input shapes.

	reference_frame (menpo.image.BooleanImage) – The reference frame, the mask of which will be used.

	transform (menpo.transform.Transform) – The transform to use for mapping the dense points.

	Returns

	dense_shapes (list of menpo.shape.PointCloud) – The list of dense shapes.

extract_patches

	
menpofit.builder.extract_patches(images, shapes, patch_shape, normalise_function=<function no_op>, prefix='', verbose=False)

	Function that extracts patches around the landmarks of the provided images.

	Parameters

	
	images (list of menpo.image.Image) – The set of images to warp.

	shapes (list of menpo.shape.PointCloud) – The set of shapes that correspond to the images.

	patch_shape ((int, int)) – The shape of the patches.

	normalise_function (callable) – A normalisation function to apply on the values of the patches.

	prefix (str) – The prefix of the printed information.

	verbose (bool, Optional) – Flag that controls information and progress printing.

	Returns

	patch_images (list of menpo.image.Image) – The list of images with the patches per image. Each output image has
shape (n_center, n_offset, n_channels, patch_shape).

normalization_wrt_reference_shape

	
menpofit.builder.normalization_wrt_reference_shape(images, group, diagonal, verbose=False)

	Function that normalizes the images’ sizes with respect to the size of the
mean shape. This step is essential before building a deformable model.

The normalization includes:
1) Computation of the reference shape as the mean shape of the images’
landmarks.
2) Scaling of the reference shape using the diagonal.
3) Rescaling of all the images so that their shape’s scale is in
correspondence with the reference shape’s scale.

	Parameters

	
	images (list of menpo.image.Image) – The set of images to normalize.

	group (str) – If str, then it specifies the group of the images’s shapes. If
None, then the images must have only one landmark group.

	diagonal (int or None) – If int, it ensures that the mean shape is scaled so that the diagonal
of the bounding box containing it matches the provided value.
If None, then the mean shape is not rescaled.

	verbose (bool, Optional) – Flag that controls information and progress printing.

	Returns

	
	reference_shape (menpo.shape.PointCloud) – The reference shape that was used to resize all training images to
a consistent object size.

	normalized_images (list of menpo.image.Image) – The images with normalized size.

rescale_images_to_reference_shape

	
menpofit.builder.rescale_images_to_reference_shape(images, group, reference_shape, verbose=False)

	Function that normalizes the images’ sizes with respect to the size of the
provided reference shape. In other words, the function rescales the provided
images so that the size of the bounding box of their attached shape is the
same as the size of the bounding box of the provided reference shape.

	Parameters

	
	images (list of menpo.image.Image) – The set of images that will be rescaled.

	group (str or None) – If str, then it specifies the group of the images’s shapes. If
None, then the images must have only one landmark group.

	reference_shape (menpo.shape.PointCloud) – The reference shape.

	verbose (bool, optional) – If True, then progress information is printed.

	Returns

	normalized_images (list of menpo.image.Image) – The rescaled images.

scale_images

	
menpofit.builder.scale_images(images, scale, prefix='', return_transforms=False, verbose=False)

	Function that rescales a list of images and optionally returns the scale
transforms.

	Parameters

	
	images (list of menpo.image.Image) – The set of images to scale.

	scale (float or tuple of floats) – The scale factor. If a tuple, the scale to apply to each dimension.
If a single float, the scale will be applied uniformly across
each dimension.

	prefix (str, optional) – The prefix of the printed information.

	return_transforms (bool, optional) – If True, then a list with the menpo.transform.Scale objects that
were used to perform the rescale for each image is also returned.

	verbose (bool, optional) – Flag that controls information and progress printing.

	Returns

	
	scaled_images (list of menpo.image.Image) – The list of rescaled images.

	scale_transforms (list of menpo.transform.Scale) – The list of scale transforms that were used. It is returned only if
return_transforms is True.

warp_images

	
menpofit.builder.warp_images(images, shapes, reference_frame, transform, prefix='', verbose=None)

	Function that warps a list of images into the provided reference frame.

	Parameters

	
	images (list of menpo.image.Image) – The set of images to warp.

	shapes (list of menpo.shape.PointCloud) – The set of shapes that correspond to the images.

	reference_frame (menpo.image.BooleanImage) – The reference frame to warp to.

	transform (menpo.transform.Transform) – Transform from the reference frame back to the image.
Defines, for each pixel location on the reference frame, which pixel
location should be sampled from on the image.

	prefix (str) – The prefix of the printed information.

	verbose (bool, Optional) – Flag that controls information and progress printing.

	Returns

	warped_images (list of menpo.image.MaskedImage) – The list of warped images.

MenpoFitBuilderWarning

	
class menpofit.builder.MenpoFitBuilderWarning

	Bases: Warning

A warning that some part of building the model may cause issues.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

MenpoFitModelBuilderWarning

	
class menpofit.builder.MenpoFitModelBuilderWarning

	Bases: Warning

A warning that the parameters chosen to build a given model may cause
unexpected behaviour.

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

menpofit.checks

Functions for checking the parameters’ values that are passed in
MenpoFit’s classes.

Parameters Check Functions

	check_diagonal

	check_landmark_trilist

	check_trilist

	check_model

Multi-Scale Parameters Check Functions

	check_scales

	check_multi_scale_param

	check_callable

	check_patch_shape

	check_max_iters

	check_max_components

	set_models_components

	check_algorithm_cls

	check_sampling

	check_graph

check_diagonal

	
menpofit.checks.check_diagonal(diagonal)

	Checks that the diagonal length used to normalize the images’ size is
>= 20.

	Parameters

	diagonal (int) – The value to check.

	Returns

	diagonal (int) – The value if it’s correct.

	Raises

	ValueError – diagonal must be >= 20 or None

check_landmark_trilist

	
menpofit.checks.check_landmark_trilist(image, transform, group=None)

	Checks that the provided image has a triangulated shape (thus an isntance of
menpo.shape.TriMesh) and the transform is menpo.transform.PiecewiseAffine

	Parameters

	
	image (menpo.image.Image or subclass) – The input image.

	transform (menpo.transform.PiecewiseAffine) – The transform object.

	group (str or None, optional) – The group of the shape to check.

	Raises

	Warning – The given images do not have an explicit triangulation applied. A
 Delaunay Triangulation will be computed and used for warping. This may
 be suboptimal and cause warping artifacts.

check_trilist

	
menpofit.checks.check_trilist(shape, transform)

	Checks that the provided shape is triangulated (thus an isntance of
menpo.shape.TriMesh) and the transform is menpo.transform.PiecewiseAffine

	Parameters

	
	shape (menpo.shape.TriMesh) – The input shape (usually the reference/mean shape of a model).

	transform (menpo.transform.PiecewiseAffine) – The transform object.

	Raises

	Warning – The given images do not have an explicit triangulation applied. A
 Delaunay Triangulation will be computed and used for warping. This may
 be suboptimal and cause warping artifacts.

check_model

	
menpofit.checks.check_model(model, cls)

	Function that checks whether the provided class object is a subclass of
the provided base class.

	Parameters

	
	model (class) – The object.

	cls (class) – The required base class.

	Raises

	ValueError – Model must be a {cls} instance.

check_scales

	
menpofit.checks.check_scales(scales)

	Checks that the provided scales argument is either int or float or an
iterable of those. It makes sure that it returns a list of scales.

	Parameters

	scales (int or float or list/tuple of those) – The value to check.

	Returns

	scales (list of int or float) – The scales in a list.

	Raises

	ValueError – scales must be an int/float or a list/tuple of int/float

check_multi_scale_param

	
menpofit.checks.check_multi_scale_param(n_scales, types, param_name, param)

	General function for checking a parameter defined for multiple scales. It
raises an error if the parameter is not an iterable with the correct size and
correct types.

	Parameters

	
	n_scales (int) – The number of scales.

	types (tuple) – The tuple of variable types that the parameter is allowed to have.

	param_name (str) – The name of the parameter.

	param (types) – The parameter value.

	Returns

	param (list of types) – The list of values per scale.

	Raises

	ValueError – {param_name} must be in {types} or a list/tuple of {types} with the same
 length as the number of scales

check_callable

	
menpofit.checks.check_callable(callables, n_scales)

	Checks the callable type per level.

	Parameters

	
	callables (callable or list of callables) – The callable to be used per scale.

	n_scales (int) – The number of scales.

	Returns

	callable_list (list) – A list of callables.

	Raises

	ValueError – callables must be a callable or a list/tuple of callables with the same
 length as the number of scales

check_patch_shape

	
menpofit.checks.check_patch_shape(patch_shape, n_scales)

	Function for checking a multi-scale patch_shape parameter value.

	Parameters

	
	patch_shape (list/tuple of int/float or list of those) – The patch shape per scale

	n_scales (int) – The number of scales.

	Returns

	patch_shape (list of list/tuple of int/float) – The list of patch shape per scale.

	Raises

	ValueError – patch_shape must be a list/tuple of int or a list/tuple of lit/tuple of
 int/float with the same length as the number of scales

check_max_iters

	
menpofit.checks.check_max_iters(max_iters, n_scales)

	Function that checks the value of a max_iters parameter defined for
multiple scales. It must be int or list of int.

	Parameters

	
	max_iters (int or list of int) – The value to check.

	n_scales (int) – The number of scales.

	Returns

	max_iters (list of int) – The list of values per scale.

	Raises

	ValueError – max_iters can be integer, integer list containing 1 or {n_scales}
 elements or None

check_max_components

	
menpofit.checks.check_max_components(max_components, n_scales, var_name)

	Checks the maximum number of components per scale. It must be None or
int or float or a list of those containing 1 or {n_scales}
elements.

	Parameters

	
	max_components (None or int or float or a list of those) – The value to check.

	n_scales (int) – The number of scales.

	var_name (str) – The name of the variable.

	Returns

	max_components (list of None or int or float) – The list of max components per scale.

	Raises

	ValueError – {var_name} must be None or an int > 0 or a 0 <= float <= 1 or a list of
 those containing 1 or {n_scales} elements

set_models_components

	
menpofit.checks.set_models_components(models, n_components)

	Function that sets the number of active components to a list of models.

	Parameters

	
	models (list or class) – The list of models per scale.

	n_components (int or float or None or list of those) – The number of components per model.

	Raises

	ValueError – n_components can be an integer or a float or None or a list containing 1
 or {n_scales} of those

check_algorithm_cls

	
menpofit.checks.check_algorithm_cls(algorithm_cls, n_scales, base_algorithm_cls)

	Function that checks whether the list of class objects defined per scale
are subclasses of the provided base class.

	Parameters

	
	algorithm_cls (class or list of class) – The list of objects per scale.

	n_scales (int) – The number of scales.

	base_algorithm_cls (class) – The required base class.

	Raises

	ValueError – algorithm_cls must be a subclass of {base_algorithm_cls} or a list/tuple
 of {base_algorithm_cls} subclasses with the same length as the number of
 scales {n_scales}

check_sampling

	
menpofit.checks.check_sampling(sampling, n_scales)

	Function that checks the value of a sampling parameter defined for
multiple scales. It must be int or ndarray or list of those.

	Parameters

	
	sampling (int or ndarray or list of those) – The value to check.

	n_scales (int) – The number of scales.

	Returns

	sampling (list of int or ndarray) – The list of values per scale.

	Raises

	
	ValueError – A sampling list can only contain 1 element or {n_scales} elements

	ValueError – sampling can be an integer or ndarray, a integer or ndarray list
 containing 1 or {n_scales} elements or None

check_graph

	
menpofit.checks.check_graph(graph, graph_types, param_name, n_scales)

	Checks the provided graph per pyramidal level. The graph must be a
subclass of graph_types or a list of those.

	Parameters

	
	graph (graph or list of graph types) – The graph argument to check.

	graph_types (graph or tuple of graphs) – The tuple of allowed graph types.

	param_name (str) – The name of the graph parameter.

	n_scales (int) – The number of pyramidal levels.

	Returns

	graph (list of graph types) – The graph per scale in a list.

	Raises

	
	ValueError – {param_name} must be a list of length equal to the number of scales.

	ValueError – {param_name} must be a list of {graph_types_str}. {} given instead.

menpofit.differentiable

Differentiable Abstract Classes

Objects that are able to compute their own derivatives.

	DL

	DP

	DX

DL

	
class menpofit.differentiable.DL

	Bases: object

Object that is able to take its own derivative with respect to landmark
changes.

	
abstract d_dl(points)

	The derivative of this spatial object with respect to spatial changes
in anchor landmark points or centres, evaluated at points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dl ((n_points, n_centres, n_dims) ndarray) – The Jacobian wrt landmark changes.

d_dl[i, k, m] is the scalar differential change that the
any dimension of the i’th point experiences due to a first order
change in the m’th dimension of the k’th landmark point.

Note that at present this assumes that the change in every
dimension is equal.

DP

	
class menpofit.differentiable.DP

	Bases: object

Object that is able to take its own derivative with respect to the
parametrisation.

The parametrisation of objects is typically defined by the
menpo.base.Vectorizable interface. As a result, DP is a mix-in
that should be inherited along with menpo.base.Vectorizable.

	
abstract d_dp(points)

	The derivative of this spatial object with respect to the
parametrisation changes evaluated at points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

d_dp[i, j, k] is the scalar differential change that the
k’th dimension of the i’th point experiences due to a first
order change in the j’th scalar in the parametrisation vector.

DX

	
class menpofit.differentiable.DX

	Bases: object

Object that is able to take its own derivative with respect to spatial
changes.

	
abstract d_dx(points)

	The first order derivative of this spatial object with respect to
spatial changes evaluated at points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dx ((n_points, n_dims, n_dims) ndarray) – The Jacobian wrt spatial changes.

d_dx[i, j, k] is the scalar differential change that the
j’th dimension of the i’th point experiences due to a first
order change in the k’th dimension.

It may be the case that the Jacobian is constant across space -
in this case axis zero may have length 1 to allow for
broadcasting.

menpofit.error

Normalisers

Functions that compute a metric which can be used to normalise the error
between two shapes.

Bounding Box Normalisers

	bb_area

	bb_perimeter

	bb_avg_edge_length

	bb_diagonal

Distance Normalisers

	distance_two_indices

Errors

Functions that compute the error between two shapes.

Root Mean Square Error

	root_mean_square_error

	root_mean_square_bb_normalised_error

	root_mean_square_distance_normalised_error

	root_mean_square_distance_indexed_normalised_error

Euclidean Distance Error

	euclidean_error

	euclidean_bb_normalised_error

	euclidean_distance_normalised_error

	euclidean_distance_indexed_normalised_error

Statistical Measures

Functions that compute statistical measures given a set of errors for multiple
images.

	compute_cumulative_error

	area_under_curve_and_failure_rate

	mad

	compute_statistical_measures

Object-Specific Errors

Error functions for specific objects.

Face

	bb_avg_edge_length_68_euclidean_error

	bb_avg_edge_length_49_euclidean_error

	mean_pupil_68_error

	mean_pupil_49_error

	outer_eye_corner_68_euclidean_error

	outer_eye_corner_51_euclidean_error

	outer_eye_corner_49_euclidean_error

bb_area

	
menpofit.error.bb_area(shape)

	Computes the area of the bounding box of the provided shape,
i.e.

\[h w\]

where \(h\) and \(w\) are the height and width of the bounding box.

	Parameters

	shape (menpo.shape.PointCloud or subclass) – The input shape.

	Returns

	bb_area (float) – The area of the bounding box.

bb_perimeter

	
menpofit.error.bb_perimeter(shape)

	Computes the perimeter of the bounding box of the provided shape, i.e.

\[2(h + w)\]

where \(h\) and \(w\) are the height and width of the bounding box.

	Parameters

	shape (menpo.shape.PointCloud or subclass) – The input shape.

	Returns

	bb_perimeter (float) – The perimeter of the bounding box.

bb_avg_edge_length

	
menpofit.error.bb_avg_edge_length(shape)

	Computes the average edge length of the bounding box of the provided shape,
i.e.

\[\frac{h + w}{2} = \frac{2h + 2w}{4}\]

where \(h\) and \(w\) are the height and width of the bounding box.

	Parameters

	shape (menpo.shape.PointCloud or subclass) – The input shape.

	Returns

	bb_avg_edge_length (float) – The average edge length of the bounding box.

bb_diagonal

	
menpofit.error.bb_diagonal(shape)

	Computes the diagonal of the bounding box of the provided shape, i.e.

\[\sqrt{h^2 + w^2}\]

where \(h\) and \(w\) are the height and width of the bounding box.

	Parameters

	shape (menpo.shape.PointCloud or subclass) – The input shape.

	Returns

	bb_diagonal (float) – The diagonal of the bounding box.

distance_two_indices

	
menpofit.error.distance_two_indices(index1, index2, shape)

	Computes the Euclidean distance between two points of a shape, i.e.

\[\sqrt{(s_{i,x}-s_{j,x})^2 + (s_{i,y}-s_{j,y})^2}\]

where \(s_{i,x}\), \(s_{i,y}\) are the x and y coordinates of
the \(i\)’th point (index1) and \(s_{j,x}\), \(s_{j,y}\) are
the x and y coordinates of the \(j\)’th point (index2).

	Parameters

	
	index1 (int) – The index of the first point.

	index2 (int) – The index of the second point.

	shape (menpo.shape.PointCloud) – The input shape.

	Returns

	distance_two_indices (float) – The Euclidean distance between the points.

root_mean_square_error

	
menpofit.error.root_mean_square_error(shape, gt_shape)

	Computes the root mean square error between two shapes, i.e.

\[\sqrt{\frac{1}{N}\sum_{i=1}^N(s_i-s^*_i)^2}\]

where \(s_i\) and \(s^*_i\) are the coordinates of the \(i\)’th
point of the final and ground truth shapes, and \(N\) is the total
number of points.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure).

	gt_shape (menpo.shape.PointCloud) – The ground truth shape.

	Returns

	root_mean_square_error (float) – The root mean square error.

root_mean_square_bb_normalised_error

	
menpofit.error.root_mean_square_bb_normalised_error(shape, gt_shape, norm_shape=None, norm_type='avg_edge_length')

	Computes the root mean square error between two shapes normalised by a
measure based on the ground truth shape’s bounding box, i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \sqrt{\frac{1}{N}\sum_{i=1}^N(s_i-s^*_i)^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \(s_i\) and \(s^*_i\) are the coordinates of the
\(i\)’th point of the final and ground truth shapes, and \(N\) is
the total number of points. Finally, \(\mathcal{N}(s^*)\) is a
normalising function that returns a measure based on the ground truth
shape’s bounding box.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure).

	gt_shape (menpo.shape.PointCloud) – The ground truth shape.

	norm_shape (menpo.shape.PointCloud or None, optional) – The shape to be used to compute the normaliser. If None, then the
ground truth shape is used.

	norm_type ({'area', 'perimeter', 'avg_edge_length', 'diagonal'}, optional) – The type of the normaliser. Possible options are:

	Method

	Description

	bb_area

	Area of norm_shape’s bounding box

	bb_perimeter

	Perimeter of norm_shape’s bounding box

	bb_avg_edge_length

	Average edge length of norm_shape’s bbox

	bb_diagonal

	Diagonal of norm_shape’s bounding box

	Returns

	error (float) – The computed root mean square normalised error.

root_mean_square_distance_normalised_error

	
menpofit.error.root_mean_square_distance_normalised_error(shape, gt_shape, distance_norm_f)

	Computes the root mean square error between two shapes normalised by a
distance measure between two shapes, i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s,s^*)}\]

where

\[\mathcal{F}(s,s^*) = \sqrt{\frac{1}{N}\sum_{i=1}^N(s_i-s^*_i)^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \(s_i\) and \(s^*_i\) are the coordinates of the
\(i\)’th point of the final and ground truth shapes, and \(N\) is
the total number of points. Finally, \(\mathcal{N}(s,s^*)\) is a
normalising function based on a distance metric between the two shapes.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure).

	gt_shape (menpo.shape.PointCloud) – The ground truth shape.

	distance_norm_f (callable) – The function to be used for computing the normalisation distance metric.

	Returns

	error (float) – The computed root mean square normalised error.

root_mean_square_distance_indexed_normalised_error

	
menpofit.error.root_mean_square_distance_indexed_normalised_error(shape, gt_shape, index1, index2)

	Computes the root mean square error between two shapes normalised by the
distance measure between two points of the ground truth shape, i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \sqrt{\frac{1}{N}\sum_{i=1}^N(s_i-s^*_i)^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \(s_i\) and \(s^*_i\) are the coordinates of the
\(i\)’th point of the final and ground truth shapes, and \(N\) is
the total number of points. Finally, \(\mathcal{N}(s^*)\) is a
normalising function that returns the distance between two points of the
ground truth shape.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure).

	gt_shape (menpo.shape.PointCloud) – The ground truth shape.

	index1 (int) – The index of the first point.

	index2 (int) – The index of the second point.

	Returns

	error (float) – The computed root mean square normalised error.

euclidean_error

	
menpofit.error.euclidean_error(shape, gt_shape)

	Computes the Euclidean error between two shapes, i.e.

\[\frac{1}{N}\sum_{i=1}^N\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \((s_{i,x}, s_{i,y})\) are the x and y coordinates of the
\(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape and \(N\) is the total number of points.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure).

	gt_shape (menpo.shape.PointCloud) – The ground truth shape.

	Returns

	root_mean_square_error (float) – The Euclidean error.

euclidean_bb_normalised_error

	
menpofit.error.euclidean_bb_normalised_error(shape, gt_shape, norm_shape=None, norm_type='avg_edge_length')

	Computes the Euclidean error between two shapes normalised by a measure
based on the ground truth shape’s bounding box, i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{N}\sum_{i=1}^N\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape and \(N\) is the total number of points. Finally,
\(\mathcal{N}(s^*)\) is a normalising function that returns a measure
based on the ground truth shape’s bounding box.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure).

	gt_shape (menpo.shape.PointCloud) – The ground truth shape.

	norm_shape (menpo.shape.PointCloud or None, optional) – The shape to be used to compute the normaliser. If None, then the
ground truth shape is used.

	norm_type ({'area', 'perimeter', 'avg_edge_length', 'diagonal'}, optional) – The type of the normaliser. Possible options are:

	Method

	Description

	bb_area

	Area of norm_shape’s bounding box

	bb_perimeter

	Perimeter of norm_shape’s bounding box

	bb_avg_edge_length

	Average edge length of norm_shape’s bbox

	bb_diagonal

	Diagonal of norm_shape’s bounding box

	Returns

	error (float) – The computed Euclidean normalised error.

euclidean_distance_normalised_error

	
menpofit.error.euclidean_distance_normalised_error(shape, gt_shape, distance_norm_f)

	Computes the Euclidean error between two shapes normalised by a distance
measure between two shapes, i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s,s^*)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{N}\sum_{i=1}^N\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape and \(N\) is the total number of points. Finally,
\(\mathcal{N}(s,s^*)\) is a normalising function based on a distance
metric between the two shapes.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure).

	gt_shape (menpo.shape.PointCloud) – The ground truth shape.

	distance_norm_f (callable) – The function to be used for computing the normalisation distance metric.

	Returns

	error (float) – The computed Euclidean normalised error.

euclidean_distance_indexed_normalised_error

	
menpofit.error.euclidean_distance_indexed_normalised_error(shape, gt_shape, index1, index2)

	Computes the Euclidean error between two shapes normalised by the
distance measure between two points of the ground truth shape, i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{N}\sum_{i=1}^N\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape and \(N\) is the total number of points. Finally,
\(\mathcal{N}(s^*)\) is a normalising function that returns the
distance between two points of the ground truth shape.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure).

	gt_shape (menpo.shape.PointCloud) – The ground truth shape.

	index1 (int) – The index of the first point.

	index2 (int) – The index of the second point.

	Returns

	error (float) – The computed Euclidean normalised error.

compute_cumulative_error

	
menpofit.error.compute_cumulative_error(errors, bins)

	Computes the values of the Cumulative Error Distribution (CED).

	Parameters

	
	errors (list of float) – The list of errors per image.

	bins (list of float) – The values of the error bins centers at which the CED is evaluated.

	Returns

	ced (list of float) – The computed CED.

area_under_curve_and_failure_rate

	
menpofit.error.area_under_curve_and_failure_rate(errors, step_error, max_error, min_error=0.0)

	Computes the Area Under the Curve (AUC) and Failure Rate (FR) of a given
Cumulative Distribution Error (CED).

	Parameters

	
	errors (list of float) – The list of errors per image.

	step_error (float) – The sampling step of the error bins of the CED.

	max_error (float) – The maximum error value of the CED.

	min_error (float) – The minimum error value of the CED.

	Returns

	
	auc (float) – The Area Under the Curve value.

	fr (float) – The Failure Rate value.

mad

	
menpofit.error.mad(errors)

	Computes the Median Absolute Deviation of a set of errors.

	Parameters

	errors (list of float) – The list of errors per image.

	Returns

	mad (float) – The median absolute deviation value.

compute_statistical_measures

	
menpofit.error.compute_statistical_measures(errors, step_error, max_error, min_error=0.0)

	Computes various statistics given a set of errors that correspond to
multiple images. It can also deal with multiple sets of errors that
correspond to different methods.

	Parameters

	
	errors (list of float or list of list of float) – The list of errors per image. You can provide a list of lists
for the errors of multiple methods.

	step_error (float) – The sampling step of the error bins of the CED for computing the Area
Under the Curve and the Failure Rate.

	max_error (float) – The maximum error value of the CED for computing the Area Under the
Curve and the Failure Rate.

	min_error (float) – The minimum error value of the CED for computing the Area Under the
Curve and the Failure Rate.

	Returns

	
	mean (float or list of float) – The mean value.

	mean (float or list of float) – The standard deviation.

	median (float or list of float) – The median value.

	mad (float or list of float) – The mean absolute deviation value.

	max (float or list of float) – The maximum value.

	auc (float or list of float) – The area under the curve value.

	fr (float or list of float) – The failure rate value.

bb_avg_edge_length_68_euclidean_error

	
menpofit.error.bb_avg_edge_length_68_euclidean_error(shape, gt_shape)

	Computes the Euclidean error based on 68 points normalised by the average
edge length of the 68-point ground truth shape’s bounding box, i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{68}\sum_{i=1}^{68}\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape. Finally, \(\mathcal{N}(s^*)\) is a normalising function
that returns the average edge length of the bounding box of the 68-point
ground truth shape (bb_avg_edge_length).

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure). It
must have 68 points.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape. It must have 68 points.

	Returns

	normalised_error (float) – The computed Euclidean normalised error.

	Raises

	
	ValueError – Final shape must have 68 points

	ValueError – Ground truth shape must have 68 points

bb_avg_edge_length_49_euclidean_error

	
menpofit.error.bb_avg_edge_length_49_euclidean_error(shape, gt_shape)

	Computes the Euclidean error based on 49 points normalised by the average
edge length of the 68-point ground truth shape’s bounding box, i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{49}\sum_{i=1}^{49}\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape. Finally, \(\mathcal{N}(s^*)\) is a normalising function
that returns the average edge length of the bounding box of the 68-point
ground truth shape (bb_avg_edge_length).

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure). It
must have 68 or 66 or 51 or 49 points.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape. It must have 68 points.

	Returns

	normalised_error (float) – The computed Euclidean normalised error.

	Raises

	
	ValueError – Final shape must have 68 or 51 or 49 points

	ValueError – Ground truth shape must have 68 points

mean_pupil_68_error

	
menpofit.error.mean_pupil_68_error(shape, gt_shape)

	Computes the Euclidean error based on 68 points normalised with the
distance between the mean eye points (pupils), i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{68}\sum_{i=1}^{68}\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape. Finally, \(\mathcal{N}(s)\) is the distance between the
mean eye points (pupils).

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure). It
must have 68 points.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape. It must have 68 points.

	Returns

	normalised_error (float) – The computed normalised Euclidean error.

	Raises

	
	ValueError – Final shape must have 68 points

	ValueError – Ground truth shape must have 68 points

mean_pupil_49_error

	
menpofit.error.mean_pupil_49_error(shape, gt_shape)

	Computes the euclidean error based on 49 points normalised with the
distance between the mean eye points (pupils), i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{49}\sum_{i=1}^{49}\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape. Finally, \(\mathcal{N}(s)\) is the distance between the
mean eye points (pupils).

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure). It
must have either 68 or 66 or 51 or 49 points.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape. It must have either 68 or 66 or 51 or 49 points.

	Returns

	normalised_error (float) – The computed normalised Euclidean error.

	Raises

	
	ValueError – Final shape must have 68 or 66 or 51 or 49 points

	ValueError – Ground truth shape must have 68 or 66 or 51 or 49 points

outer_eye_corner_68_euclidean_error

	
menpofit.error.outer_eye_corner_68_euclidean_error(shape, gt_shape)

	Computes the Euclidean error based on 68 points normalised with the
distance between the mean eye points (pupils), i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{68}\sum_{i=1}^{68}\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape. Finally, \(\mathcal{N}(s^*)\) is the distance between the
36-th and 45-th points.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure). It
must have 68 points.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape. It must have 68 points.

	Returns

	normalised_error (float) – The computed normalised Euclidean error.

	Raises

	
	ValueError – Final shape must have 68 points

	ValueError – Ground truth shape must have 68 points

outer_eye_corner_51_euclidean_error

	
menpofit.error.outer_eye_corner_51_euclidean_error(shape, gt_shape)

	Computes the Euclidean error based on 51 points normalised with the
distance between the mean eye points (pupils), i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{51}\sum_{i=1}^{51}\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape. Finally, \(\mathcal{N}(s^*)\) is the distance between the
19-th and 28-th points.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure). It
must 68 or 51 points.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape. It must have 68 or 51 points.

	Returns

	normalised_error (float) – The computed normalised Euclidean error.

	Raises

	
	ValueError – Final shape must have 68 or 51 points

	ValueError – Ground truth shape must have 68 or 51 points

outer_eye_corner_49_euclidean_error

	
menpofit.error.outer_eye_corner_49_euclidean_error(shape, gt_shape)

	Computes the Euclidean error based on 49 points normalised with the
distance between the mean eye points (pupils), i.e.

\[\frac{\mathcal{F}(s,s^*)}{\mathcal{N}(s^*)}\]

where

\[\mathcal{F}(s,s^*) = \frac{1}{49}\sum_{i=1}^{49}\sqrt{(s_{i,x}-s^*_{i,x})^2 + (s_{i,y}-s^*_{i,y})^2}\]

where \(s\) and \(s^*\) are the final and ground truth shapes,
respectively. \((s_{i,x}, s_{i,y})\) are the x and y coordinates of
the \(i\)’th point of the final shape, \((s^*_{i,x}, s^*_{i,y})\)
are the x and y coordinates of the \(i\)’th point of the ground
truth shape. Finally, \(\mathcal{N}(s^*)\) is the distance between the
19-th and 28-th points.

	Parameters

	
	shape (menpo.shape.PointCloud) – The input shape (e.g. the final shape of a fitting procedure). It
must 68 or 66 or 51 or 49 points.

	gt_shape (menpo.shape.PointCloud) – The ground truth shape. It must have 68 or 66 or 51 or 49 points.

	Returns

	normalised_error (float) – The computed normalised Euclidean error.

	Raises

	
	ValueError – Final shape must have 68 or 66 or 51 or 49 points

	ValueError – Ground truth shape must have 68 or 66 or 51 or 49 points

menpofit.fitter

Fitter Classes

	MultiScaleNonParametricFitter

	MultiScaleParametricFitter

Perturb Functions

Collection of functions that perform a kind of perturbation on a shape or bounding box.

	align_shape_with_bounding_box

	generate_perturbations_from_gt

	noisy_alignment_similarity_transform

	noisy_shape_from_bounding_box

	noisy_shape_from_shape

	noisy_target_alignment_transform

MultiScaleNonParametricFitter

	
class menpofit.fitter.MultiScaleNonParametricFitter(scales, reference_shape, holistic_features, algorithms)

	Bases: object

Class for defining a multi-scale fitter for a non-parametric fitting method,
i.e. a method that does not optimise over a parametric shape model.

	Parameters

	
	scales (list of int or float) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale.

	reference_shape (menpo.shape.PointCloud) – The reference shape that will be used to normalise the size of an input
image so that the scale of its initial fitting shape matches the scale of
the reference shape.

	holistic_features (list of closure) – The features that will be extracted from the input image at each scale.
They must provided in ascending order, i.e. from lowest to highest scale.

	algorithms (list of class) – The list of algorithm objects that will perform the fitting per scale.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

MultiScaleParametricFitter

	
class menpofit.fitter.MultiScaleParametricFitter(scales, reference_shape, holistic_features, algorithms)

	Bases: MultiScaleNonParametricFitter

Class for defining a multi-scale fitter for a parametric fitting method, i.e.
a method that optimises over the parameters of a statistical shape model.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step takes place at each scale
and it is not considered as an iteration, thus it is not counted
for the provided max_iters.

	Parameters

	
	scales (list of int or float) – The scale value of each scale. They must provided in ascending order,
i.e. from lowest to highest scale.

	reference_shape (menpo.shape.PointCloud) – The reference shape that will be used to normalise the size of an input
image so that the scale of its initial fitting shape matches the scale of
the reference shape.

	holistic_features (list of closure) – The features that will be extracted from the input image at each scale.
They must provided in ascending order, i.e. from lowest to highest scale.

	algorithms (list of class) – The list of algorithm objects that will perform the fitting per scale.

	
fit_from_bb(image, bounding_box, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial bounding box.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, max_iters=20, gt_shape=None, return_costs=False, **kwargs)

	Fits the multi-scale fitter to an image given an initial shape.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	max_iters (int or list of int, optional) – The maximum number of iterations. If int, then it specifies the
maximum number of iterations over all scales. If list of int,
then specifies the maximum number of iterations per scale.

	gt_shape (menpo.shape.PointCloud, optional) – The ground truth shape associated to the image.

	return_costs (bool, optional) – If True, then the cost function values will be computed
during the fitting procedure. Then these cost values will be
assigned to the returned fitting_result. Note that the costs
computation increases the computational cost of the fitting. The
additional computation cost depends on the fitting method. Only
use this option for research purposes.

	kwargs (dict, optional) – Additional keyword arguments that can be passed to specific
implementations.

	Returns

	fitting_result (MultiScaleNonParametricIterativeResult or subclass) – The multi-scale fitting result containing the result of the fitting
procedure.

	
property holistic_features

	The features that are extracted from the input image at each scale in
ascending order, i.e. from lowest to highest scale.

	Type

	list of closure

	
property n_scales

	Returns the number of scales.

	Type

	int

	
property reference_shape

	The reference shape that is used to normalise the size of an input image
so that the scale of its initial fitting shape matches the scale of this
reference shape.

	Type

	menpo.shape.PointCloud

	
property scales

	The scale value of each scale in ascending order, i.e. from lowest to
highest scale.

	Type

	list of int or float

align_shape_with_bounding_box

	
menpofit.fitter.align_shape_with_bounding_box(shape, bounding_box, alignment_transform_cls=<class 'menpo.transform.homogeneous.similarity.AlignmentSimilarity'>, **kwargs)

	Aligns the provided shape with the bounding box using a particular alignment
transform.

	Parameters

	
	shape (menpo.shape.PointCloud) – The shape instance used in the alignment.

	bounding_box (menpo.shape.PointDirectedGraph) – The bounding box instance used in the alignment.

	alignment_transform_cls (menpo.transform.Alignment, optional) – The class of the alignment transform used to perform the alignment.

	Returns

	noisy_shape (menpo.shape.PointCloud) – The noisy shape

generate_perturbations_from_gt

	
menpofit.fitter.generate_perturbations_from_gt(images, n_perturbations, perturb_func, gt_group=None, bb_group_glob=None, verbose=False)

	Function that returns a callable that generates perturbations of the bounding
boxes of the provided images.

	Parameters

	
	images (list of menpo.image.Image) – The list of images.

	n_perturbations (int) – The number of perturbed shapes to be generated per image.

	perturb_func (callable) – The function that will be used for generating the perturbations.

	gt_group (str) – The group of the ground truth shapes attached to the images.

	bb_group_glob (str) – The group of the bounding boxes attached to the images.

	verbose (bool, optional) – If True, then progress information is printed.

	Returns

	generated_bb_func (callable) – The function that generates the perturbations.

noisy_alignment_similarity_transform

	
menpofit.fitter.noisy_alignment_similarity_transform(source, target, noise_type='uniform', noise_percentage=0.1, allow_alignment_rotation=False)

	Constructs and perturbs the optimal similarity transform between the source
and target shapes by adding noise to its parameters.

	Parameters

	
	source (menpo.shape.PointCloud) – The source pointcloud instance used in the alignment

	target (menpo.shape.PointCloud) – The target pointcloud instance used in the alignment

	noise_type ({'uniform', 'gaussian'}, optional) – The type of noise to be added.

	noise_percentage (float in (0, 1) or list of len 3, optional) – The standard percentage of noise to be added. If float, then the same
amount of noise is applied to the scale, rotation and translation
parameters of the optimal similarity transform. If list of
float it must have length 3, where the first, second and third elements
denote the amount of noise to be applied to the scale, rotation and
translation parameters, respectively.

	allow_alignment_rotation (bool, optional) – If False, then the rotation is not considered when computing the
optimal similarity transform between source and target.

	Returns

	noisy_alignment_similarity_transform (menpo.transform.Similarity) – The noisy Similarity Transform between source and target.

noisy_shape_from_bounding_box

	
menpofit.fitter.noisy_shape_from_bounding_box(shape, bounding_box, noise_type='uniform', noise_percentage=0.05, allow_alignment_rotation=False)

	Constructs and perturbs the optimal similarity transform between the bounding
box of the source shape and the target bounding box, by adding noise to its
parameters. It returns the noisy version of the provided shape.

	Parameters

	
	shape (menpo.shape.PointCloud) – The source pointcloud instance used in the alignment. Note that the
bounding box of the shape will be used.

	bounding_box (menpo.shape.PointDirectedGraph) – The target bounding box instance used in the alignment

	noise_type ({'uniform', 'gaussian'}, optional) – The type of noise to be added.

	noise_percentage (float in (0, 1) or list of len 3, optional) – The standard percentage of noise to be added. If float, then the same
amount of noise is applied to the scale, rotation and translation
parameters of the optimal similarity transform. If list of
float it must have length 3, where the first, second and third elements
denote the amount of noise to be applied to the scale, rotation and
translation parameters, respectively.

	allow_alignment_rotation (bool, optional) – If False, then the rotation is not considered when computing the
optimal similarity transform between source and target.

	Returns

	noisy_shape (menpo.shape.PointCloud) – The noisy shape.

noisy_shape_from_shape

	
menpofit.fitter.noisy_shape_from_shape(reference_shape, shape, noise_type='uniform', noise_percentage=0.05, allow_alignment_rotation=False)

	Constructs and perturbs the optimal similarity transform between the
provided reference shape and the target shape, by adding noise to its
parameters. It returns the noisy version of the reference shape.

	Parameters

	
	reference_shape (menpo.shape.PointCloud) – The source reference shape instance used in the alignment.

	shape (menpo.shape.PointDirectedGraph) – The target shape instance used in the alignment

	noise_type ({'uniform', 'gaussian'}, optional) – The type of noise to be added.

	noise_percentage (float in (0, 1) or list of len 3, optional) – The standard percentage of noise to be added. If float, then the same
amount of noise is applied to the scale, rotation and translation
parameters of the optimal similarity transform. If list of
float it must have length 3, where the first, second and third elements
denote the amount of noise to be applied to the scale, rotation and
translation parameters, respectively.

	allow_alignment_rotation (bool, optional) – If False, then the rotation is not considered when computing the
optimal similarity transform between source and target.

	Returns

	noisy_reference_shape (menpo.shape.PointCloud) – The noisy reference shape.

noisy_target_alignment_transform

	
menpofit.fitter.noisy_target_alignment_transform(source, target, alignment_transform_cls=<class 'menpo.transform.homogeneous.affine.AlignmentAffine'>, noise_std=0.1, **kwargs)

	Constructs the optimal alignment transform between the source and a noisy
version of the target obtained by adding white noise to each of its points.

	Parameters

	
	source (menpo.shape.PointCloud) – The source pointcloud instance used in the alignment

	target (menpo.shape.PointCloud) – The target pointcloud instance used in the alignment

	alignment_transform_cls (menpo.transform.Alignment, optional) – The alignment transform class used to perform the alignment.

	noise_std (float or list of float, optional) – The standard deviation of the white noise to be added to each one of
the target points. If float, then the same standard deviation is used
for all points. If list, then it must define a value per point.

	Returns

	noisy_transform (menpo.transform.Alignment) – The noisy Similarity Transform

menpofit.io

Menpofit includes the ability to save and load pre-trained models for
specific tasks. This module contains code for
pickling down, downloading, and restoring fitters efficiently.

If you make use of one of menpofit’s pre-trained models, you will find that
the type that is provided to you is the PickleWrappedFitter. See it’s
documentation to understand it’s purpose and how you can effectively use it.

	PickleWrappedFitter

PickleWrappedFitter

	
class menpofit.io.PickleWrappedFitter(fitter_cls, fitter_args, fitter_kwargs, fit_from_bb_kwargs, fit_from_shape_kwargs, image_preprocess=<function image_greyscale_crop_preprocess>)

	Bases: object

Wrapper around a menpofit fitter so that we can a) efficiently pickle it
and b) parametrize over both the fitter construction and the fit
methods (e.g. .fit_from_bb() and .fit_from_shape())

Pickling menpofit fitters is a little tricky for a two reasons. Firstly,
on construction of a fitter from a deformable model some amount of
pre-processing takes place which allocates potentially large arrays. To
ship a compact model we would therefore rather delay the construction of
the fitter until load time on the client.

If this was the only issue, we could achieve this by simply saving a
partial over the fitter constructor with all the args and kwargs
the fitter constructor takes - after loading the pickle, invoking the
partial with no args (it’s parameters being fully specified) would return
the fitter and all would be well.

However, we also may want to choose fit-time parameters for the fitter
for optimal usage, (for instance, a choice over the max_iters
kwarg that we know to be efficient). This leaves us with a problem,
as now we need to have some entity that can store state which we can pass
to both the fitter and to the resulting fitters methods on the client at
unpickle time.

This class is the solution to this problem. To use, you should pickle
down a partial over this class specifying all arguments and kwargs
needed for the fitter constructor and for the fit methods.

At load time, menpofit will invoke the partial, returning this object
instantiated. This offers the same API as a menpofit fitter, and so can
be used transparently to fit. If you wish to access the original fitter
(without fit parameter customization) this can be accessed as the
wrapped_fitter property.

	Parameters

	
	fitter_cls (Fitter) – A menpofit fitter class that will be constructed at unpickle time,
e.g. LucasKanadeAAMFitter

	fitter_args (tuple) – A tuple of all args that need to be passed to fitter_cls at
construction time e.g. (aam,)

	fitter_kwargs (dict) – A dictionary of kwargs that will to be passed to fitter_cls at
construction time e.g.
{ 'lk_algorithm_cls': WibergInverseCompositional }

	fit_from_bb_kwargs (dict, e.g. { max_iters: [25, 5] }) – A dictionary of kwargs that will to be passed to the
wrapped fitter’s fit_from_bb method at fit time. These in effect
change the defaults that the original fitter offered, but can still
be overridden at call time (e.g.
self.fit_from_bb(image, bbox, max_iters=[50, 50]) would take
precedence over the max_iters in the above example)

	fit_from_shape_kwargs (dict, e.g. { max_iters: [25, 5] }) – A dictionary of kwargs that will to be passed to the
wrapped fitter’s fit_from_shape method at fit time. These in
effect change the defaults that the original fitter offered,
but can still be overridden at call time (e.g.
self.fit_from_shape(image, shape, max_iters=[50, 50]) would take
precedence over the max_iters in the above example)

	image_preprocess (callable or None, optional) – A pre-processing function to apply on the test image before fitting. The
default option converts the image to greyscale. The function needs to
have the following signature:

new_image, transform = image_preprocess(image, pointcloud)

where new_image is the pre-processed image and transform is the
menpo.transform.Homogeneous object that was applied on the image.
If None, then no pre-processing is performed.

Examples

from menpofit.io import PickleWrappedFitter, image_greyscale_crop_preprocess
from functools import partial

LucasKanadeAAMFitter only takes one argument, a trained aam.
fitter_args = (aam,)

kwargs for fitter construction. Note that here sampling is a
list of numpy arrays we have already constructed (one per level)
fitter_kwargs = dict(lk_algorithm_cls=WibergInverseCompositional,
 sampling=sampling)

kwargs for fitter.fit_from_{bb, shape}
(note here we reuse the same kwargs twice)
fit_kwargs = dict(max_iters=[25, 5])

Partial over the PickleWrappedFitter to prepare an object that can be
invoked at load time
fitter_wrapper = partial(PickleWrappedFitter, LucasKanadeAAMFitter,
 fitter_args, fitter_kwargs,
 fit_kwargs, fit_kwargs,
 image_preprocess=image_greyscale_crop_preprocess)

save the pickle down.
mio.export_pickle(fitter_wrapper, 'pretrained_aam.pkl')

----------------------- L O A D T I M E ---------------------------#

at load time, invoke the partial to instantiate this class (and build
the internally-held wrapped fitter)
fitter = mio.import_pickle('pretrained_aam.pkl')()

	
fit_from_bb(image, bounding_box, **kwargs)

	Fits the fitter to an image given an initial bounding box, using the
optimal parameters that we chosen for this pickled fitter.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	bounding_box (menpo.shape.PointDirectedGraph) – The initial bounding box from which the fitting procedure will
start. Note that the bounding box is used in order to align the
model’s reference shape.

	kwargs (dict, optional) – Other kwargs to override the optimal defaults. See the
documentation for .fit_from_bb() on the type of
self.wrapped_fitter to see what can be provided here.

	Returns

	fitting_result (FittingResult or subclass) – The fitting result containing the result of the fitting
procedure.

	
fit_from_shape(image, initial_shape, **kwargs)

	Fits the fitter to an image given an initial shape, using the
optimal parameters that we chosen for this pickled fitter.

	Parameters

	
	image (menpo.image.Image or subclass) – The image to be fitted.

	initial_shape (menpo.shape.PointCloud) – The initial shape estimate from which the fitting procedure
will start.

	kwargs (dict) – Other kwargs to override the optimal defaults. See the
documentation for .fit_from_shape() on the type of
self.wrapped_fitter to see what can be provided here.

	Returns

	fitting_result (FittingResult or subclass) – The fitting result containing the result of the fitting
procedure.

menpofit.math

Regression

	IRLRegression

	IIRLRegression

	PCRRegression

	OptimalLinearRegression

	OPPRegression

Correlation Filters

	mccf

	imccf

	mosse

	imosse

IRLRegression

	
class menpofit.math.IRLRegression(alpha=0, bias=True, incrementable=False)

	Bases: object

Class for training and applying Incremental Regularized Linear Regression.

	Parameters

	
	alpha (float, optional) – The regularization parameter of the features.

	bias (bool, optional) – If True, a bias term is used.

	incrementable (bool, optional) – If True, then the regression model will have the ability to get
incremented.

	
increment(X, Y)

	Incrementally update the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

	Raises

	ValueError – Model is not incrementable

	
predict(x)

	Makes a prediction using the trained regression model.

	Parameters

	x ((n_features,) ndarray) – The input feature vector.

	Returns

	prediction ((n_dims,) ndarray) – The prediction vector.

	
train(X, Y)

	Train the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

IIRLRegression

	
class menpofit.math.IIRLRegression(alpha=0, bias=False, alpha2=0)

	Bases: IRLRegression

Class for training and applying Indirect Incremental Regularized Linear
Regression.

	Parameters

	
	alpha (float, optional) – The regularization parameter.

	bias (bool, optional) – If True, a bias term is used.

	alpha2 (float, optional) – The regularization parameter of the Hessian.

	
increment(X, Y)

	Incrementally update the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

	Raises

	ValueError – Model is not incrementable

	
predict(x)

	Makes a prediction using the trained regression model.

	Parameters

	x ((n_features,) ndarray) – The input feature vector.

	Returns

	prediction ((n_dims,) ndarray) – The prediction vector.

	
train(X, Y)

	Train the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

PCRRegression

	
class menpofit.math.PCRRegression(variance=None, bias=True)

	Bases: object

Class for training and applying Multivariate Linear Regression using
Principal Component Regression.

	Parameters

	
	variance (float or None, optional) – The SVD variance.

	bias (bool, optional) – If True, a bias term is used.

	
increment(X, Y)

	Incrementally update the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

	Raises

	ValueError – Model is not incrementable

	
predict(x)

	Makes a prediction using the trained regression model.

	Parameters

	x ((n_features,) ndarray) – The input feature vector.

	Returns

	prediction ((n_dims,) ndarray) – The prediction vector.

	
train(X, Y)

	Train the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

OptimalLinearRegression

	
class menpofit.math.OptimalLinearRegression(variance=None, bias=True)

	Bases: object

Class for training and applying Multivariate Linear Regression using optimal
reconstructions.

	Parameters

	
	variance (float or None, optional) – The SVD variance.

	bias (bool, optional) – If True, a bias term is used.

	
increment(X, Y)

	Incrementally update the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

	Raises

	ValueError – Model is not incrementable

	
predict(x)

	Makes a prediction using the trained regression model.

	Parameters

	x ((n_features,) ndarray) – The input feature vector.

	Returns

	prediction ((n_dims,) ndarray) – The prediction vector.

	
train(X, Y)

	Train the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

OPPRegression

	
class menpofit.math.OPPRegression(bias=True, whiten=False)

	Bases: object

Class for training and applying Multivariate Linear Regression using
Orthogonal Procrustes Problem reconstructions.

	Parameters

	
	bias (bool, optional) – If True, a bias term is used.

	whiten (bool, optional) – Whether to use a whitened PCA model.

	
increment(X, Y)

	Incrementally update the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

	Raises

	ValueError – Model is not incrementable

	
predict(x)

	Makes a prediction using the trained regression model.

	Parameters

	x ((n_features,) ndarray) – The input feature vector.

	Returns

	prediction ((n_dims,) ndarray) – The prediction vector.

	
train(X, Y)

	Train the regression model.

	Parameters

	
	X ((n_features, n_samples) ndarray) – The array of feature vectors.

	Y ((n_dims, n_samples) ndarray) – The array of target vectors.

mccf

	
menpofit.math.mccf(X, y, l=0.01, boundary='constant', crop_filter=True)

	Multi-Channel Correlation Filter (MCCF).

	Parameters

	
	X ((n_images, n_channels, image_h, image_w) ndarray) – The training images.

	y ((1, response_h, response_w) ndarray) – The desired response.

	l (float, optional) – Regularization parameter.

	boundary ({'constant', 'symmetric'}, optional) – Determines how the image is padded.

	crop_filter (bool, optional) – If True, the shape of the MOSSE filter is the same as the shape
of the desired response. If False, the filter’s shape is equal to:
X[0].shape + y.shape - 1

	Returns

	
	f ((1, response_h, response_w) ndarray) – Multi-Channel Correlation Filter (MCCF) filter associated to the
training images.

	sXY ((N,) ndarray) – The auto-correlation array, where
N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels.

	sXX ((N, N) ndarray) – The cross-correlation array, where
N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels.

References

	1

	H. K. Galoogahi, T. Sim, and Simon Lucey. “Multi-Channel
Correlation Filters”. IEEE Proceedings of International Conference on
Computer Vision (ICCV), 2013.

imccf

	
menpofit.math.imccf(A, B, n_ab, X, y, l=0.01, boundary='constant', crop_filter=True, f=1.0)

	Incremental Multi-Channel Correlation Filter (MCCF)

	Parameters

	
	A ((N,) ndarray) – The current auto-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels.

	B ((N, N) ndarray) – The current cross-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels.

	n_ab (int) – The current number of images.

	X ((n_images, n_channels, image_h, image_w) ndarray) – The training images (patches).

	y ((1, response_h, response_w) ndarray) – The desired response.

	l (float, optional) – Regularization parameter.

	boundary ({'constant', 'symmetric'}, optional) – Determines how the image is padded.

	crop_filter (bool, optional) – If True, the shape of the MOSSE filter is the same as the shape
of the desired response. If False, the filter’s shape is equal to:
X[0].shape + y.shape - 1

	f ([0, 1] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally.
If <1.0, more emphasis is put on the new samples.

	Returns

	
	f ((1, response_h, response_w) ndarray) – Multi-Channel Correlation Filter (MCCF) filter associated to the
training images.

	sXY ((N,) ndarray) – The auto-correlation array, where
N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels.

	sXX ((N, N) ndarray) – The cross-correlation array, where
N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels.

References

	1

	D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. “Visual
Object Tracking using Adaptive Correlation Filters”, IEEE Proceedings
of International Conference on Computer Vision and Pattern Recognition
(CVPR), 2010.

	2

	H. K. Galoogahi, T. Sim, and Simon Lucey. “Multi-Channel
Correlation Filters”. IEEE Proceedings of International Conference on
Computer Vision (ICCV), 2013.

mosse

	
menpofit.math.mosse(X, y, l=0.01, boundary='constant', crop_filter=True)

	Minimum Output Sum of Squared Errors (MOSSE) filter.

	Parameters

	
	X ((n_images, n_channels, image_h, image_w) ndarray) – The training images.

	y ((1, response_h, response_w) ndarray) – The desired response.

	l (float, optional) – Regularization parameter.

	boundary ({'constant', 'symmetric'}, optional) – Determines how the image is padded.

	crop_filter (bool, optional) – If True, the shape of the MOSSE filter is the same as the shape
of the desired response. If False, the filter’s shape is equal to:
X[0].shape + y.shape - 1

	Returns

	
	f ((1, response_h, response_w) ndarray) – Minimum Output Sum od Squared Errors (MOSSE) filter associated to
the training images.

	sXY ((N,) ndarray) – The auto-correlation array, where
N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels.

	sXX ((N, N) ndarray) – The cross-correlation array, where
N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels.

References

	1

	D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. “Visual
Object Tracking using Adaptive Correlation Filters”, IEEE Proceedings
of International Conference on Computer Vision and Pattern Recognition
(CVPR), 2010.

imosse

	
menpofit.math.imosse(A, B, n_ab, X, y, l=0.01, boundary='constant', crop_filter=True, f=1.0)

	Incremental Minimum Output Sum of Squared Errors (iMOSSE) filter.

	Parameters

	
	A ((N,) ndarray) – The current auto-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels.

	B ((N, N) ndarray) – The current cross-correlation array, where
N = (patch_h+response_h-1) * (patch_w+response_w-1) * n_channels.

	n_ab (int) – The current number of images.

	X ((n_images, n_channels, image_h, image_w) ndarray) – The training images (patches).

	y ((1, response_h, response_w) ndarray) – The desired response.

	l (float, optional) – Regularization parameter.

	boundary ({'constant', 'symmetric'}, optional) – Determines how the image is padded.

	crop_filter (bool, optional) – If True, the shape of the MOSSE filter is the same as the shape
of the desired response. If False, the filter’s shape is equal to:
X[0].shape + y.shape - 1

	f ([0, 1] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally.
If <1.0, more emphasis is put on the new samples.

	Returns

	
	f ((1, response_h, response_w) ndarray) – Minimum Output Sum od Squared Errors (MOSSE) filter associated to
the training images.

	sXY ((N,) ndarray) – The auto-correlation array, where
N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels.

	sXX ((N, N) ndarray) – The cross-correlation array, where
N = (image_h+response_h-1) * (image_w+response_w-1) * n_channels.

References

	1

	D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. “Visual
Object Tracking using Adaptive Correlation Filters”, IEEE Proceedings
of International Conference on Computer Vision and Pattern Recognition
(CVPR), 2010.

menpofit.modelinstance

Abstract Classes

	ModelInstance

Similarity Model

	similarity_2d_instance_model

	GlobalSimilarityModel

Point Distribution Model

	PDM

	GlobalPDM

	OrthoPDM

ModelInstance

	
class menpofit.modelinstance.ModelInstance(model)

	Bases: Targetable, Vectorizable, DP

Base class for creating a model that can produce a target
menpo.shape.PointCloud and knows how to compute its own derivative with
respect to its parametrisation.

	Parameters

	model (class) – The trained model (e.g. menpo.model.PCAModel).

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
abstract d_dp(points)

	The derivative of this spatial object with respect to the
parametrisation changes evaluated at points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

d_dp[i, j, k] is the scalar differential change that the
k’th dimension of the i’th point experiences due to a first
order change in the j’th scalar in the parametrisation vector.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property n_weights

	The number of parameters in the linear model.

	Type

	int

	
property target

	The current menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

	
property weights

	The weights of the model.

	Type

	(n_weights,) ndarray

similarity_2d_instance_model

	
menpofit.modelinstance.similarity_2d_instance_model(shape)

	Creates a menpo.model.MeanLinearModel that encodes the 2D similarity
transforms that can be applied on a 2D shape that consists of n_points.

	Parameters

	shape (menpo.shape.PointCloud) – The input 2D shape.

	Returns

	model (subclass of menpo.model.MeanLinearModel) – Linear model with four components, the linear combinations of which
represent the original shape under a similarity transform. The model is
exhaustive (that is, all possible similarity transforms can be expressed
with the model).

GlobalSimilarityModel

	
class menpofit.modelinstance.GlobalSimilarityModel(data, **kwargs)

	Bases: Targetable, Vectorizable

Class for creating a model that represents a global similarity transform
(in-plane rotation, scaling, translation).

	Parameters

	data (list of menpo.shape.PointCloud) – The list of shapes to use as training data.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dp(_)

	Returns the Jacobian of the similarity model reshaped in order to have
the standard Jacobian shape, i.e. (n_points, n_weights, n_dims)
which maps to (n_features, n_components, n_dims) on the linear model.

	Returns

	jacobian ((n_features, n_components, n_dims) ndarray) – The Jacobian of the model in the standard Jacobian shape.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (menpo.shape.PointCloud) – The new target that this object should try and regenerate.

	
property n_dims

	The number of dimensions of the spatial instance of the model.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property n_weights

	The number of parameters in the linear model.

	Type

	int

	
property target

	The current menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

	
property weights

	The weights of the model.

	Type

	(n_weights,) ndarray

PDM

	
class menpofit.modelinstance.PDM(data, max_n_components=None)

	Bases: ModelInstance

Class for building a Point Distribution Model. It is a specialised version
of ModelInstance for use with spatial data.

	Parameters

	
	data (list of menpo.shape.PointCloud or menpo.model.PCAModel instance) – If a list of menpo.shape.PointCloud, then a menpo.model.PCAModel
will be trained from those training shapes. Otherwise, a trained
menpo.model.PCAModel instance can be provided.

	max_n_components (int or None, optional) – The maximum number of components that the model will keep. If None,
then all the components will be kept.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dp(points)

	Returns the Jacobian of the similarity model reshaped in order to have
the standard Jacobian shape, i.e. (n_points, n_weights, n_dims)
which maps to (n_features, n_components, n_dims) on the linear model.

	Returns

	jacobian ((n_features, n_components, n_dims) ndarray) – The Jacobian of the model in the standard Jacobian shape.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
increment(shapes, n_shapes=None, forgetting_factor=1.0, max_n_components=None, verbose=False)

	Update the eigenvectors, eigenvalues and mean vector of this model
by performing incremental PCA on the given samples.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – List of new shapes to update the model from.

	n_shapes (int or None, optional) – If int, then shapes must be an iterator that yields n_shapes.
If None, then shapes has to be a list (so we know how large
the data matrix needs to be).

	forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally
and, hence, the results is the exact same as performing batch
PCA on the concatenated list of old and new simples. If <1.0,
more emphasis is put on the new samples. See [1] for details.

	max_n_components (int or None, optional) – The maximum number of components that the model will keep.
If None, then all the components will be kept.

	verbose (bool, optional) – If True, then information about the progress will be printed.

References

	1

	D. Ross, J. Lim, R.S. Lin, M.H. Yang. “Incremental Learning for
Robust Visual Tracking”. International Journal on Computer Vision,
2007.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property n_active_components

	The number of components currently in use on this model.

	Type

	int

	
property n_dims

	The number of dimensions of the spatial instance of the model

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property n_weights

	The number of parameters in the linear model.

	Type

	int

	
property target

	The current menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

	
property weights

	The weights of the model.

	Type

	(n_weights,) ndarray

GlobalPDM

	
class menpofit.modelinstance.GlobalPDM(data, global_transform_cls, max_n_components=None)

	Bases: PDM

Class for building a Point Distribution Model that also stores a Global
Alignment transform. The final transform couples the Global Alignment
transform to a statistical linear model, so that its weights are fully
specified by both the weights of statistical model and the weights of the
similarity transform.

	Parameters

	
	data (list of menpo.shape.PointCloud or menpo.model.PCAModel instance) – If a list of menpo.shape.PointCloud, then a menpo.model.PCAModel
will be trained from those training shapes. Otherwise, a trained
menpo.model.PCAModel instance can be provided.

	global_transform_cls (class) – The Global Similarity transform class
(e.g. DifferentiableAlignmentSimilarity).

	max_n_components (int or None, optional) – The maximum number of components that the model will keep. If None,
then all the components will be kept.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dp(points)

	The derivative with respect to the parametrisation changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
increment(shapes, n_shapes=None, forgetting_factor=1.0, max_n_components=None, verbose=False)

	Update the eigenvectors, eigenvalues and mean vector of this model
by performing incremental PCA on the given samples.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – List of new shapes to update the model from.

	n_shapes (int or None, optional) – If int, then shapes must be an iterator that yields n_shapes.
If None, then shapes has to be a list (so we know how large
the data matrix needs to be).

	forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally
and, hence, the results is the exact same as performing batch
PCA on the concatenated list of old and new simples. If <1.0,
more emphasis is put on the new samples. See [1] for details.

	max_n_components (int or None, optional) – The maximum number of components that the model will keep.
If None, then all the components will be kept.

	verbose (bool, optional) – If True, then information about the progress will be printed.

References

	1

	D. Ross, J. Lim, R.S. Lin, M.H. Yang. “Incremental Learning for
Robust Visual Tracking”. International Journal on Computer Vision,
2007.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property global_parameters

	The parameters for the global transform.

	Type

	``(n_global_parameters,) ndarray

	
property n_active_components

	The number of components currently in use on this model.

	Type

	int

	
property n_dims

	The number of dimensions of the spatial instance of the model

	Type

	int

	
property n_global_parameters

	The number of parameters in the global_transform

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property n_weights

	The number of parameters in the linear model.

	Type

	int

	
property target

	The current menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

	
property weights

	The weights of the model.

	Type

	(n_weights,) ndarray

OrthoPDM

	
class menpofit.modelinstance.OrthoPDM(data, max_n_components=None)

	Bases: GlobalPDM

Class for building a Point Distribution Model that also stores a Global
Alignment transform. The final transform couples the Global Alignment
transform to a statistical linear model, so that its weights are fully
specified by both the weights of statistical model and the weights of the
similarity transform.

This transform (in contrast to the :map`GlobalPDM`) additionally
orthonormalises both the global and the model basis against each other,
ensuring that orthogonality and normalization is enforced across the unified
bases.

	Parameters

	
	data (list of menpo.shape.PointCloud or menpo.model.PCAModel instance) – If a list of menpo.shape.PointCloud, then a menpo.model.PCAModel
will be trained from those training shapes. Otherwise, a trained
menpo.model.PCAModel instance can be provided.

	max_n_components (int or None, optional) – The maximum number of components that the model will keep. If None,
then all the components will be kept.

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dp(points)

	The derivative with respect to the parametrisation changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
increment(shapes, n_shapes=None, forgetting_factor=1.0, max_n_components=None, verbose=False)

	Update the eigenvectors, eigenvalues and mean vector of this model
by performing incremental PCA on the given samples.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – List of new shapes to update the model from.

	n_shapes (int or None, optional) – If int, then shapes must be an iterator that yields n_shapes.
If None, then shapes has to be a list (so we know how large
the data matrix needs to be).

	forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally
and, hence, the results is the exact same as performing batch
PCA on the concatenated list of old and new simples. If <1.0,
more emphasis is put on the new samples. See [1] for details.

	max_n_components (int or None, optional) – The maximum number of components that the model will keep.
If None, then all the components will be kept.

	verbose (bool, optional) – If True, then information about the progress will be printed.

References

	1

	D. Ross, J. Lim, R.S. Lin, M.H. Yang. “Incremental Learning for
Robust Visual Tracking”. International Journal on Computer Vision,
2007.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property global_parameters

	The parameters for the global transform.

	Type

	(n_global_parameters,) ndarray

	
property n_active_components

	The number of components currently in use on this model.

	Type

	int

	
property n_dims

	The number of dimensions of the spatial instance of the model

	Type

	int

	
property n_global_parameters

	The number of parameters in the global_transform

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property n_weights

	The number of parameters in the linear model.

	Type

	int

	
property target

	The current menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

	
property weights

	The weights of the model.

	Type

	(n_weights,) ndarray

menpofit.result

Basic Result

Class for defining a basic fitting result.

	Result

Iterative Result

Classes for defining an iterative fitting result.

	NonParametricIterativeResult

	ParametricIterativeResult

Multi-Scale Iterative Result

Classes for defining a multi-scale iterative fitting result.

	MultiScaleNonParametricIterativeResult

	MultiScaleParametricIterativeResult

Result

	
class menpofit.result.Result(final_shape, image=None, initial_shape=None, gt_shape=None)

	Bases: object

Class for defining a basic fitting result. It holds the final shape of a
fitting process and, optionally, the initial shape, ground truth shape
and the image object.

	Parameters

	
	final_shape (menpo.shape.PointCloud) – The final shape of the fitting process.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	initial_shape (menpo.shape.PointCloud or None, optional) – The initial shape that was provided to the fitting method to
initialise the fitting process. If None, then no initial shape is
assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

NonParametricIterativeResult

	
class menpofit.result.NonParametricIterativeResult(shapes, initial_shape=None, image=None, gt_shape=None, costs=None)

	Bases: Result

Class for defining a non-parametric iterative fitting result, i.e. the
result of a method that does not optimize over a parametric shape model. It
holds the shapes of all the iterations of the fitting procedure. It can
optionally store the image on which the fitting was applied, as well as its
ground truth shape.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – The list of shapes per iteration. Note that the list does not
include the initial shape. The last member of the list is the final
shape.

	initial_shape (menpo.shape.PointCloud or None, optional) – The initial shape from which the fitting process started. If None,
then no initial shape is assigned.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	costs (list of float or None, optional) – The list of cost per iteration. If None, then it is assumed that
the cost function cannot be computed for the specific algorithm. It must
have the same length as shapes.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.shapes[1]

	Iteration 1

	i

	self.shapes[i]

	Iteration i

	n_iters

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists) and
final_shape.

	Type

	list of menpo.shape.PointCloud

ParametricIterativeResult

	
class menpofit.result.ParametricIterativeResult(shapes, shape_parameters, initial_shape=None, image=None, gt_shape=None, costs=None)

	Bases: NonParametricIterativeResult

Class for defining a parametric iterative fitting result, i.e. the
result of a method that optimizes the parameters of a shape model. It
holds the shapes and shape parameters of all the iterations of the
fitting procedure. It can optionally store the image on which the
fitting was applied, as well as its ground truth shape.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step is not counted in the number
of iterations.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – The list of shapes per iteration. Note that the list does not
include the initial shape. However, it includes the reconstruction of
the initial shape. The last member of the list is the final shape.

	shape_parameters (list of ndarray) – The list of shape parameters per iteration. Note that the list
includes the parameters of the projection of the initial shape. The last
member of the list corresponds to the final shape’s parameters. It must
have the same length as shapes.

	initial_shape (menpo.shape.PointCloud or None, optional) – The initial shape from which the fitting process started. If
None, then no initial shape is assigned.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then
no ground truth shape is assigned.

	costs (list of float or None, optional) – The list of cost per iteration. If None, then it is assumed that
the cost function cannot be computed for the specific algorithm. It must
have the same length as shapes.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property reconstructed_initial_shape

	Returns the initial shape’s reconstruction with the shape model that was
used to initialise the iterative optimisation process.

	Type

	menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
reconstructed_initial_shape and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists),
reconstructed_initial_shape and final_shape.

	Type

	list of menpo.shape.PointCloud

MultiScaleNonParametricIterativeResult

	
class menpofit.result.MultiScaleNonParametricIterativeResult(results, scales, affine_transforms, scale_transforms, image=None, gt_shape=None)

	Bases: NonParametricIterativeResult

Class for defining a multi-scale non-parametric iterative fitting result,
i.e. the result of a multi-scale method that does not optimise over a
parametric shape model. It holds the shapes of all the iterations of
the fitting procedure, as well as the scales. It can optionally store the
image on which the fitting was applied, as well as its ground truth shape.

	Parameters

	
	results (list of NonParametricIterativeResult) – The list of non parametric iterative results per scale.

	scales (list of float) – The scale values (normally small to high).

	affine_transforms (list of menpo.transform.Affine) – The list of affine transforms per scale that transform the shapes into
the original image space.

	scale_transforms (list of menpo.shape.Scale) – The list of scaling transforms per scale.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.shapes[1]

	Iteration 1

	i

	self.shapes[i]

	Iteration i

	n_iters

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property n_iters_per_scale

	Returns the number of iterations per scale of the fitting process.

	Type

	list of int

	
property n_scales

	Returns the number of scales used during the fitting process.

	Type

	int

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists) and
final_shape.

	Type

	list of menpo.shape.PointCloud

MultiScaleParametricIterativeResult

	
class menpofit.result.MultiScaleParametricIterativeResult(results, scales, affine_transforms, scale_transforms, image=None, gt_shape=None)

	Bases: MultiScaleNonParametricIterativeResult

Class for defining a multi-scale parametric iterative fitting result, i.e.
the result of a multi-scale method that optimizes over a parametric shape
model. It holds the shapes of all the iterations of the fitting procedure,
as well as the scales. It can optionally store the image on which the
fitting was applied, as well as its ground truth shape.

Note

When using a method with a parametric shape model, the first step
is to reconstruct the initial shape using the shape model. The
generated reconstructed shape is then used as initialisation for
the iterative optimisation. This step is not counted in the number
of iterations.

	Parameters

	
	results (list of ParametricIterativeResult) – The list of parametric iterative results per scale.

	scales (list of float) – The scale values (normally small to high).

	affine_transforms (list of menpo.transform.Affine) – The list of affine transforms per scale that transform the shapes into
the original image space.

	scale_transforms (list of menpo.shape.Scale) – The list of scaling transforms per scale.

	image (menpo.image.Image or subclass or None, optional) – The image on which the fitting process was applied. Note that a copy
of the image will be assigned as an attribute. If None, then no
image is assigned.

	gt_shape (menpo.shape.PointCloud or None, optional) – The ground truth shape associated with the image. If None, then no
ground truth shape is assigned.

	
displacements()

	A list containing the displacement between the shape of each iteration
and the shape of the previous one.

	Type

	list of ndarray

	
displacements_stats(stat_type='mean')

	A list containing a statistical metric on the displacements between
the shape of each iteration and the shape of the previous one.

	Parameters

	stat_type ({'mean', 'median', 'min', 'max'}, optional) – Specifies a statistic metric to be extracted from the displacements.

	Returns

	displacements_stat (list of float) – The statistical metric on the points displacements for each
iteration.

	Raises

	ValueError – type must be ‘mean’, ‘median’, ‘min’ or ‘max’

	
errors(compute_error=None)

	Returns a list containing the error at each fitting iteration, if the
ground truth shape exists.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	Returns

	errors (list of float) – The error at each iteration of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
final_error(compute_error=None)

	Returns the final error of the fitting process, if the ground truth
shape exists. This is the error computed based on the final_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the fitted and
ground truth shapes.

	Returns

	final_error (float) – The final error at the end of the fitting process.

	Raises

	ValueError – Ground truth shape has not been set, so the final error cannot be
 computed

	
initial_error(compute_error=None)

	Returns the initial error of the fitting process, if the ground truth
shape and initial shape exist. This is the error computed based on the
initial_shape.

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the initial and
ground truth shapes.

	Returns

	initial_error (float) – The initial error at the beginning of the fitting process.

	Raises

	
	ValueError – Initial shape has not been set, so the initial error cannot be
 computed

	ValueError – Ground truth shape has not been set, so the initial error cannot be
 computed

	
plot_costs(figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the cost function evolution at each fitting iteration.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None, optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'}, optional) – The style of the lines.

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (marker, optional) – The style of the markers.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers.If None, the colour
is sampled from the jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_displacements(stat_type='mean', figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of a statistical metric of the displacement between the shape of
each iteration and the shape of the previous one.

	Parameters

	
	stat_type ({mean, median, min, max}, optional) – Specifies a statistic metric to be extracted from the displacements
(see also displacements_stats() method).

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
plot_errors(compute_error=None, figure_id=None, new_figure=False, render_lines=True, line_colour='b', line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_face_colour='b', marker_edge_colour='k', marker_edge_width=1.0, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(10, 6), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot of the error evolution at each fitting iteration.

	Parameters

	
	compute_error (callable, optional) – Callable that computes the error between the shape at each
iteration and the ground truth shape.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_lines (bool, optional) – If True, the line will be rendered.

	line_colour (colour or None (See below), optional) – The colour of the line. If None, the colour is sampled from
the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	line_style (str (See below), optional) – The style of the lines. Example options:

{-, --, -., :}

	line_width (float, optional) – The width of the lines.

	render_markers (bool, optional) – If True, the markers will be rendered.

	marker_style (str (See below), optional) – The style of the markers.
Example marker options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int, optional) – The size of the markers in points.

	marker_face_colour (colour or None, optional) – The face (filling) colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_colour (colour or None, optional) – The edge colour of the markers. If None, the colour
is sampled from the jet colormap.
Example colour options are

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float, optional) – The width of the markers’ edge.

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style (str (See below), optional) – The font style of the axes.
Example options

{normal, italic, oblique}

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Returns

	renderer (menpo.visualize.GraphPlotter) – The renderer object.

	
reconstructed_initial_error(compute_error=None)

	Returns the error of the reconstructed initial shape of the fitting
process, if the ground truth shape exists. This is the error computed
based on the reconstructed_initial_shapes[0].

	Parameters

	compute_error (callable, optional) – Callable that computes the error between the reconstructed initial
and ground truth shapes.

	Returns

	reconstructed_initial_error (float) – The error that corresponds to the initial shape’s reconstruction.

	Raises

	ValueError – Ground truth shape has not been set, so the reconstructed initial
 error cannot be computed

	
to_result(pass_image=True, pass_initial_shape=True, pass_gt_shape=True)

	Returns a Result instance of the object, i.e. a fitting result
object that does not store the iterations. This can be useful for
reducing the size of saved fitting results.

	Parameters

	
	pass_image (bool, optional) – If True, then the image will get passed (if it exists).

	pass_initial_shape (bool, optional) – If True, then the initial shape will get passed (if it exists).

	pass_gt_shape (bool, optional) – If True, then the ground truth shape will get passed (if it
exists).

	Returns

	result (Result) – The final “lightweight” fitting result.

	
view(figure_id=None, new_figure=False, render_image=True, render_final_shape=True, render_initial_shape=False, render_gt_shape=False, subplots_enabled=True, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, final_marker_face_colour='r', final_marker_edge_colour='k', final_line_colour='r', initial_marker_face_colour='b', initial_marker_edge_colour='k', initial_line_colour='b', gt_marker_face_colour='y', gt_marker_edge_colour='k', gt_line_colour='y', render_lines=True, line_style='-', line_width=2, render_markers=True, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the fitting result. The method renders the final fitted
shape and optionally the initial shape, ground truth shape and the
image, id they were provided.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	render_final_shape (bool, optional) – If True, then the final fitting shape gets rendered.

	render_initial_shape (bool, optional) – If True and the initial fitting shape exists, then it gets
rendered.

	render_gt_shape (bool, optional) – If True and the ground truth shape exists, then it gets
rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (See Below, optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated. Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	final_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_marker_edge_colour (See Below, optional) – The edge colour of the markers of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	final_line_colour (See Below, optional) – The line colour of the final fitting shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_marker_edge_colour (See Below, optional) – The edge colour of the markers of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	initial_line_colour (See Below, optional) – The line colour of the initial shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_face_colour (See Below, optional) – The face (filling) colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_marker_edge_colour (See Below, optional) – The edge colour of the markers of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	gt_line_colour (See Below, optional) – The line colour of the ground truth shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	line_style (str or list of str, optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{'-', '--', '-.', ':'}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per shape in (final, initial, groundtruth)
order.

	marker_style (str or list of str, optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
shape in (final, initial, groundtruth) order.
Example options:

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per shape in (final, initial, groundtruth) order.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align ({center, right, left}, optional) – The horizontal alignment of the numbers’ texts.

	numbers_vertical_align ({center, top, bottom, baseline}, optional) – The vertical alignment of the numbers’ texts.

	numbers_font_name (See Below, optional) – The font of the numbers. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (See Below, optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style ({normal, italic, oblique}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See Below, optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See Below, optional) – The font of the axes. Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (See Below, optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_iterations(figure_id=None, new_figure=False, iters=None, render_image=True, subplots_enabled=False, channels=None, interpolation='bilinear', cmap_name=None, alpha=1.0, masked=True, render_lines=True, line_style='-', line_width=2, line_colour=None, render_markers=True, marker_edge_colour=None, marker_face_colour=None, marker_style='o', marker_size=4, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align='center', numbers_vertical_align='bottom', numbers_font_name='sans-serif', numbers_font_size=10, numbers_font_style='normal', numbers_font_weight='normal', numbers_font_colour='k', render_legend=True, legend_title='', legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=False, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7))

	Visualize the iterations of the fitting process.

	Parameters

	
	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	iters (int or list of int or None, optional) – The iterations to be visualized. If None, then all the
iterations are rendered.

	No.

	Visualised shape

	Description

	0

	self.initial_shape

	Initial shape

	1

	self.reconstructed_initial_shape

	Reconstructed initial

	2

	self.shapes[2]

	Iteration 1

	i

	self.shapes[i]

	Iteration i-1

	n_iters+1

	self.final_shape

	Final shape

	render_image (bool, optional) – If True and the image exists, then it gets rendered.

	subplots_enabled (bool, optional) – If True, then the requested final, initial and ground truth
shapes get rendered on separate subplots.

	channels (int or list of int or all or None) – If int or list of int, the specified channel(s) will be
rendered. If all, all the channels will be rendered in subplots.
If None and the image is RGB, it will be rendered in RGB mode.
If None and the image is not RGB, it is equivalent to all.

	interpolation (str (See Below), optional) – The interpolation used to render the image. For example, if
bilinear, the image will be smooth and if nearest, the
image will be pixelated.
Example options

{none, nearest, bilinear, bicubic, spline16, spline36, hanning,
 hamming, hermite, kaiser, quadric, catrom, gaussian, bessel,
 mitchell, sinc, lanczos}

	cmap_name (str, optional,) – If None, single channel and three channel images default
to greyscale and rgb colormaps respectively.

	alpha (float, optional) – The alpha blending value, between 0 (transparent) and 1 (opaque).

	masked (bool, optional) – If True, then the image is rendered as masked.

	render_lines (bool or list of bool, optional) – If True, the lines will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	line_style (str or list of str (See below), optional) – The style of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options:

{-, --, -., :}

	line_width (float or list of float, optional) – The width of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.

	line_colour (colour or list of colour (See Below), optional) – The colour of the lines. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.

	marker_style (str or `list of str (See below), optional) – The style of the markers. You can either provide a single value that
will be used for all shapes or a list with a different value per
iteration shape.
Example options

{., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8}

	marker_size (int or list of int, optional) – The size of the markers in points. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	marker_edge_colour (colour or list of colour (See Below), optional) – The edge colour of the markers. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_face_colour (colour or list of colour (See Below), optional) – The face (filling) colour of the markers. You can either provide a
single value that will be used for all shapes or a list with a
different value per iteration shape.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. You can either provide a single
value that will be used for all shapes or a list with a different
value per iteration shape.

	render_numbering (bool, optional) – If True, the landmarks will be numbered.

	numbers_horizontal_align (str (See below), optional) – The horizontal alignment of the numbers’ texts.
Example options

{center, right, left}

	numbers_vertical_align (str (See below), optional) – The vertical alignment of the numbers’ texts.
Example options

{center, top, bottom, baseline}

	numbers_font_name (str (See below), optional) – The font of the numbers.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	numbers_font_size (int, optional) – The font size of the numbers.

	numbers_font_style ({normal, italic, oblique}, optional) – The font style of the numbers.

	numbers_font_weight (str (See below), optional) – The font weight of the numbers.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	numbers_font_colour (See Below, optional) – The font colour of the numbers.
Example options

{r, g, b, c, m, k, w}
or
(3,) ndarray

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	legend_font_style (str (See below), optional) – The font style of the legend.
Example options

{normal, italic, oblique}

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (str (See below), optional) – The font weight of the legend.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float) tuple, optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (str (See below), optional) – The font of the axes.
Example options

{serif, sans-serif, cursive, fantasy, monospace}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({normal, italic, oblique}, optional) – The font style of the axes.

	axes_font_weight (str (See below), optional) – The font weight of the axes.
Example options

{ultralight, light, normal, regular, book, medium, roman,
 semibold, demibold, demi, bold, heavy, extra bold, black}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the Image as a percentage of the Image’s width. If
tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_y_limits ((float, float) tuple or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the Image as a percentage of the Image’s height.
If tuple or list, then it defines the axis limits. If None,
then the limits are set automatically.

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) tuple or None optional) – The size of the figure in inches.

	Returns

	renderer (class) – The renderer object.

	
view_widget(figure_size=(7, 7))

	Visualizes the result object using an interactive widget.

	Parameters

	figure_size ((int, int), optional) – The initial size of the rendered figure.

	
property costs

	Returns a list with the cost per iteration. It returns None if
the costs are not computed.

	Type

	list of float or None

	
property final_shape

	Returns the final shape of the fitting process.

	Type

	menpo.shape.PointCloud

	
property gt_shape

	Returns the ground truth shape associated with the image. In case there
is not an attached ground truth shape, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property image

	Returns the image that the fitting was applied on, if it was provided.
Otherwise, it returns None.

	Type

	menpo.shape.Image or subclass or None

	
property initial_shape

	Returns the initial shape that was provided to the fitting method to
initialise the fitting process. In case the initial shape does not
exist, then None is returned.

	Type

	menpo.shape.PointCloud or None

	
property is_iterative

	Flag whether the object is an iterative fitting result.

	Type

	bool

	
property n_iters

	Returns the total number of iterations of the fitting process.

	Type

	int

	
property n_iters_per_scale

	Returns the number of iterations per scale of the fitting process.

	Type

	list of int

	
property n_scales

	Returns the number of scales used during the fitting process.

	Type

	int

	
property reconstructed_initial_shapes

	Returns the result of the reconstruction step that takes place at each
scale before applying the iterative optimisation.

	Type

	list of menpo.shape.PointCloud

	
property shape_parameters

	Returns the list of shape parameters obtained at each iteration of
the fitting process. The list includes the parameters of the
initial_shape (if it exists) and final_shape.

	Type

	list of (n_params,) ndarray

	
property shapes

	Returns the list of shapes obtained at each iteration of the fitting
process. The list includes the initial_shape (if it exists) and
final_shape.

	Type

	list of menpo.shape.PointCloud

menpofit.transform

Model Driven Transforms

	OrthoMDTransform

	LinearOrthoMDTransform

Homogeneous Transforms

	DifferentiableAffine

	DifferentiableSimilarity

	DifferentiableAlignmentSimilarity

	DifferentiableAlignmentAffine

Alignments

	DifferentiablePiecewiseAffine

	DifferentiableThinPlateSplines

RBF

	DifferentiableR2LogR2RBF

	DifferentiableR2LogRRBF

OrthoMDTransform

	
class menpofit.transform.OrthoMDTransform(model, transform_cls, source=None)

	Bases: GlobalMDTransform

A transform that couples an alignment transform to a statistical model
together with a global similarity transform, such that the weights of the
transform are fully specified by both the weights of statistical model and
the weights of the similarity transform. The model is assumed to generate an
instance which is then transformed by the similarity transform; the result
defines the target landmarks of the transform. If no source is provided, the
mean of the model is defined as the source landmarks of the transform.

This transform (in contrast to the GlobalMDTransform)
additionally orthonormalises both the global and the model basis against
each other, ensuring that orthogonality and normalization is enforced
across the unified bases.

	Parameters

	
	model (OrthoPDM or subclass) – A linear statistical shape model (Point Distribution Model) that also
has a global similarity transform that is orthonormalised with the
shape bases.

	transform_cls (subclass of menpo.transform.Alignment) – A class of menpo.transform.Alignment. The align constructor will be
called on this with the source and target landmarks. The target is set
to the points generated from the model using the provide weights - the
source is either given or set to the model’s mean.

	source (menpo.shape.PointCloud or None, optional) – The source landmarks of the transform. If None, the mean of the
model is used.

	
Jp()

	Compute the parameters’ Jacobian, as shown in [1].

	Returns

	Jp ((n_params, n_params) ndarray) – The parameters’ Jacobian.

References

	1

	G. Papandreou and P. Maragos, “Adaptive and Constrained
Algorithms for Inverse Compositional Active Appearance Model
Fitting”, Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_after_from_vector_inplace(delta)

	Composes two transforms together based on the first order approximation
proposed in [1].

	Parameters

	delta ((N,) ndarray) – Vectorized ModelDrivenTransform to be applied before self.

	Returns

	transform (self) – self, updated to the result of the composition

References

	1

	G. Papandreou and P. Maragos, “Adaptive and Constrained
Algorithms for Inverse Compositional Active Appearance Model
Fitting”, Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dp(points)

	The derivative of this ModelDrivenTransform with respect to the
parametrisation changes evaluated at points.

This is done by chaining the derivative of points wrt the
source landmarks on the transform (dW/dL) together with the Jacobian
of the linear model wrt its weights (dX/dp).

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	type(self)

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance. Syntactic
sugar for self.from_vector(vector).pseudoinverse.as_vector().
On ModelDrivenTransform this is especially fast - we just negate the
vector provided.

	Parameters

	vector ((P,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((N,) ndarray) – The pseudoinverse of the vector provided

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property has_true_inverse

	Whether the transform has true inverse.

	Type

	bool

	
property n_dims

	The number of dimensions that the transform supports.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type

	int or None

	
property n_parameters

	The total number of parameters.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property target

	The current menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

LinearOrthoMDTransform

	
class menpofit.transform.LinearOrthoMDTransform(model, sparse_instance)

	Bases: OrthoPDM, Transform

A transform that couples an alignment transform to a statistical model
together with a global similarity transform, such that the weights of the
transform are fully specified by both the weights of statistical model and
the weights of the similarity transform. The model is assumed to generate an
instance which is then transformed by the similarity transform; the result
defines the target landmarks of the transform. If no source is provided, the
mean of the model is defined as the source landmarks of the transform.

This transform (in contrast to the GlobalMDTransform)
additionally orthonormalises both the global and the model basis against
each other, ensuring that orthogonality and normalization is enforced
across the unified bases.

This transform (in contrast to the OrthoMDTransform) should be used
with linear statistical models of dense shapes.

	Parameters

	
	model (menpo.model.LinearModel) – A linear statistical shape model.

	sparse_instance (menpo.shape.PointCloud) – The source landmarks of the transform.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dp(_)

	The derivative with respect to the parametrisation changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

	
from_vector(vector)

	Build a new instance of the object from it’s vectorized state.

self is used to fill out the missing state required to
rebuild a full object from it’s standardized flattened state. This
is the default implementation, which is which is a deepcopy of the
object followed by a call to from_vector_inplace(). This method
can be overridden for a performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	object (type(self)) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
increment(shapes, n_shapes=None, forgetting_factor=1.0, max_n_components=None, verbose=False)

	Update the eigenvectors, eigenvalues and mean vector of this model
by performing incremental PCA on the given samples.

	Parameters

	
	shapes (list of menpo.shape.PointCloud) – List of new shapes to update the model from.

	n_shapes (int or None, optional) – If int, then shapes must be an iterator that yields n_shapes.
If None, then shapes has to be a list (so we know how large
the data matrix needs to be).

	forgetting_factor ([0.0, 1.0] float, optional) – Forgetting factor that weights the relative contribution of new
samples vs old samples. If 1.0, all samples are weighted equally
and, hence, the results is the exact same as performing batch
PCA on the concatenated list of old and new simples. If <1.0,
more emphasis is put on the new samples. See [1] for details.

	max_n_components (int or None, optional) – The maximum number of components that the model will keep.
If None, then all the components will be kept.

	verbose (bool, optional) – If True, then information about the progress will be printed.

References

	1

	D. Ross, J. Lim, R.S. Lin, M.H. Yang. “Incremental Learning for
Robust Visual Tracking”. International Journal on Computer Vision,
2007.

	
set_target(target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (menpo.shape.PointCloud) – The new target that this object should try and regenerate.

	
property dense_target

	The current dense menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

	
property global_parameters

	The parameters for the global transform.

	Type

	(n_global_parameters,) ndarray

	
property n_active_components

	The number of components currently in use on this model.

	Type

	int

	
property n_dims

	The number of dimensions of the spatial instance of the model

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type

	int or None

	
property n_global_parameters

	The number of parameters in the global_transform

	Type

	int

	
property n_landmarks

	The number of sparse landmarks.

	Type

	int

	
property n_parameters

	The length of the vector that this object produces.

	Type

	int

	
property n_points

	The number of points on the target.

	Type

	int

	
property n_weights

	The number of parameters in the linear model.

	Type

	int

	
property sparse_target

	The current sparse menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

	
property target

	The current menpo.shape.PointCloud that this object produces.

	Type

	menpo.shape.PointCloud

	
property weights

	The weights of the model.

	Type

	(n_weights,) ndarray

DifferentiableAffine

	
class menpofit.transform.DifferentiableAffine(h_matrix, copy=True, skip_checks=False)

	Bases: Affine, DP, DX

Base class for an affine transformation that can compute its own derivative
with respect to spatial changes, as well as its parametrisation.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dp(points)

	The derivative with respect to the parametrisation changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

d_dp[i, j, k] is the scalar differential change that the
k’th dimension of the i’th point experiences due to a first
order change in the j’th scalar in the parametrisation vector.

	
d_dx(points)

	The first order derivative with respect to spatial changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dx ((n_points, n_dims, n_dims) ndarray) – The Jacobian wrt spatial changes.

d_dx[i, j, k] is the scalar differential change that the
j’th dimension of the i’th point experiences due to a first
order change in the k’th dimension.

It may be the case that the Jacobian is constant across space -
in this case axis zero may have length 1 to allow for
broadcasting.

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns

	transforms (list of DiscreteAffine) – Equivalent to this affine transform, such that

reduce(lambda x, y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)

	Creates an identity matrix Affine transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Affine) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	Homogeneous

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	n_dims * (n_dims + 1) parameters - every element of the matrix but
the homogeneous part.

	Type

	int

Examples

2D Affine: 6 parameters:

[p1, p3, p5]
[p2, p4, p6]

3D Affine: 12 parameters:

[p1, p4, p7, p10]
[p2, p5, p8, p11]
[p3, p6, p9, p12]

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

DifferentiableSimilarity

	
class menpofit.transform.DifferentiableSimilarity(h_matrix, copy=True, skip_checks=False)

	Bases: Similarity, DP, DX

Base class for a similarity transformation that can compute its own
derivative with respect to spatial changes, as well as its parametrisation.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dp(points)

	The derivative with respect to the parametrisation changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

d_dp[i, j, k] is the scalar differential change that the
k’th dimension of the i’th point experiences due to a first
order change in the j’th scalar in the parametrisation vector.

	
d_dx(points)

	The first order derivative with respect to spatial changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dx ((n_points, n_dims, n_dims) ndarray) – The Jacobian wrt spatial changes.

d_dx[i, j, k] is the scalar differential change that the
j’th dimension of the i’th point experiences due to a first
order change in the k’th dimension.

It may be the case that the Jacobian is constant across space -
in this case axis zero may have length 1 to allow for
broadcasting.

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns

	transforms (list of DiscreteAffine) – Equivalent to this affine transform, such that

reduce(lambda x, y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Similarity) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	Homogeneous

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The dimensionality of the data the transform operates on.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	Number of parameters of Similarity

2D Similarity - 4 parameters

[(1 + a), -b, tx]
[b, (1 + a), ty]

3D Similarity: Currently not supported

	Returns

	n_parameters (int) – The transform parameters

	Raises

	DimensionalityError, NotImplementedError – Only 2D transforms are supported.

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

DifferentiableAlignmentSimilarity

	
class menpofit.transform.DifferentiableAlignmentSimilarity(source, target, rotation=True, allow_mirror=False)

	Bases: AlignmentSimilarity, DP, DX

Base class that constructs a similarity transformation that is the optimal
transform to align the source to the target. It can compute its own
derivative with respect to spatial changes, as well as its parametrisation.

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_non_alignment()

	Returns the non-alignment version of the transform.

	Type

	DifferentiableSimilarity

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns

	new_transform (type(self)) – A copy of this object

	
d_dp(points)

	The derivative with respect to the parametrisation changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

d_dp[i, j, k] is the scalar differential change that the
k’th dimension of the i’th point experiences due to a first
order change in the j’th scalar in the parametrisation vector.

	
d_dx(points)

	The first order derivative with respect to spatial changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dx ((n_points, n_dims, n_dims) ndarray) – The Jacobian wrt spatial changes.

d_dx[i, j, k] is the scalar differential change that the
j’th dimension of the i’th point experiences due to a first
order change in the k’th dimension.

It may be the case that the Jacobian is constant across space -
in this case axis zero may have length 1 to allow for
broadcasting.

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns

	transforms (list of DiscreteAffine) – Equivalent to this affine transform, such that

reduce(lambda x, y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)

	Creates an identity transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Similarity) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns

	transform (type(self)) – The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	Number of parameters of Similarity

2D Similarity - 4 parameters

[(1 + a), -b, tx]
[b, (1 + a), ty]

3D Similarity: Currently not supported

	Returns

	n_parameters (int) – The transform parameters

	Raises

	DimensionalityError, NotImplementedError – Only 2D transforms are supported.

	
property n_points

	The number of points on the target.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

DifferentiableAlignmentAffine

	
class menpofit.transform.DifferentiableAlignmentAffine(source, target)

	Bases: AlignmentAffine, DP, DX

Base class that constructs an affine transformation that is the optimal
transform to align the source to the target. It can compute its own
derivative with respect to spatial changes, as well as its parametrisation.

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
as_non_alignment()

	Returns the non-alignment version of the transform.

	Type

	DifferentiableAffine

	
as_vector(**kwargs)

	Returns a flattened representation of the object as a single
vector.

	Returns

	vector ((N,) ndarray) – The core representation of the object, flattened into a
single vector. Note that this is always a view back on to the
original object, but is not writable.

	
compose_after(transform)

	A Transform that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_after_from_vector_inplace(vector)

	Specialised inplace composition with a vector. This should be
overridden to provide specific cases of composition whereby the current
state of the transform can be derived purely from the provided vector.

	Parameters

	vector ((n_parameters,) ndarray) – Vector to update the transform state with.

	
compose_after_inplace(transform)

	Update self so that it represents this transform composed
after the given transform:

a_orig = a.copy()
a.compose_after_inplace(b)
a.apply(p) == a_orig.apply(b.apply(p))

a is permanently altered to be the result of the composition. b
is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied before self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
compose_before(transform)

	A Transform that represents this transform composed
before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

An attempt is made to perform native composition, but will fall back
to a TransformChain as a last resort. See composes_with
for a description of how the mode of composition is decided.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (Transform or TransformChain) – If the composition was native, a single new Transform will
be returned. If not, a TransformChain is returned instead.

	
compose_before_inplace(transform)

	Update self so that it represents this transform composed
before the given transform:

a_orig = a.copy()
a.compose_before_inplace(b)
a.apply(p) == b.apply(a_orig.apply(p))

a is permanently altered to be the result of the composition.
b is left unchanged.

	Parameters

	transform (composes_inplace_with) – Transform to be applied after self

	Raises

	ValueError – If transform isn’t an instance of composes_inplace_with

	
copy()

	Generate an efficient copy of this HomogFamilyAlignment.

	Returns

	new_transform (type(self)) – A copy of this object

	
d_dp(points)

	The derivative with respect to the parametrisation changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dp ((n_points, n_parameters, n_dims) ndarray) – The Jacobian with respect to the parametrisation.

d_dp[i, j, k] is the scalar differential change that the
k’th dimension of the i’th point experiences due to a first
order change in the j’th scalar in the parametrisation vector.

	
d_dx(points)

	The first order derivative with respect to spatial changes evaluated at
points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dx ((n_points, n_dims, n_dims) ndarray) – The Jacobian wrt spatial changes.

d_dx[i, j, k] is the scalar differential change that the
j’th dimension of the i’th point experiences due to a first
order change in the k’th dimension.

It may be the case that the Jacobian is constant across space -
in this case axis zero may have length 1 to allow for
broadcasting.

	
decompose()

	Decompose this transform into discrete Affine Transforms.

Useful for understanding the effect of a complex composite transform.

	Returns

	transforms (list of DiscreteAffine) – Equivalent to this affine transform, such that

reduce(lambda x, y: x.chain(y), self.decompose()) == self

	
from_vector(vector)

	Build a new instance of the object from its vectorized state.

self is used to fill out the missing state required to rebuild a
full object from it’s standardized flattened state. This is the default
implementation, which is a deepcopy of the object followed by a call
to from_vector_inplace(). This method can be overridden for a
performance benefit if desired.

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of the object.

	Returns

	transform (Homogeneous) – An new instance of this class.

	
from_vector_inplace(vector)

	Deprecated. Use the non-mutating API, from_vector.

For internal usage in performance-sensitive spots,
see _from_vector_inplace()

	Parameters

	vector ((n_parameters,) ndarray) – Flattened representation of this object

	
has_nan_values()

	Tests if the vectorized form of the object contains nan values or
not. This is particularly useful for objects with unknown values that
have been mapped to nan values.

	Returns

	has_nan_values (bool) – If the vectorized object contains nan values.

	
classmethod init_from_2d_shear(phi, psi, degrees=True)

	Convenience constructor for 2D shear transformations about the origin.

	Parameters

	
	phi (float) – The angle of shearing in the X direction.

	psi (float) – The angle of shearing in the Y direction.

	degrees (bool, optional) – If True phi and psi are interpreted as degrees.
If False, phi and psi are interpreted as radians.

	Returns

	shear_transform (Affine) – A 2D shear transform.

	
classmethod init_identity(n_dims)

	Creates an identity matrix Affine transform.

	Parameters

	n_dims (int) – The number of dimensions.

	Returns

	identity (Affine) – The identity matrix transform.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Returns

	transform (type(self)) – The inverse of this transform.

	
pseudoinverse_vector(vector)

	The vectorized pseudoinverse of a provided vector instance.
Syntactic sugar for:

self.from_vector(vector).pseudoinverse().as_vector()

Can be much faster than the explict call as object creation can be
entirely avoided in some cases.

	Parameters

	vector ((n_parameters,) ndarray) – A vectorized version of self

	Returns

	pseudoinverse_vector ((n_parameters,) ndarray) – The pseudoinverse of the vector provided

	
set_h_matrix(value, copy=True, skip_checks=False)

	Deprecated
Deprecated - do not use this method - you are better off just creating
a new transform!

Updates h_matrix, optionally performing sanity checks.

Note that it won’t always be possible to manually specify the
h_matrix through this method, specifically if changing the
h_matrix could change the nature of the transform. See
h_matrix_is_mutable for how you can discover if the
h_matrix is allowed to be set for a given class.

	Parameters

	
	value (ndarray) – The new homogeneous matrix to set.

	copy (bool, optional) – If False, do not copy the h_matrix. Useful for performance.

	skip_checks (bool, optional) – If True, skip checking. Useful for performance.

	Raises

	NotImplementedError – If h_matrix_is_mutable returns False.

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property composes_inplace_with

	Affine can swallow composition with any other Affine.

	
property composes_with

	Any Homogeneous can compose with any other Homogeneous.

	
property h_matrix

	The homogeneous matrix defining this transform.

	Type

	(n_dims + 1, n_dims + 1) ndarray

	
property h_matrix_is_mutable

	Deprecated
True iff set_h_matrix() is permitted on this type of
transform.

If this returns False calls to set_h_matrix() will raise
a NotImplementedError.

	Type

	bool

	
property has_true_inverse

	The pseudoinverse is an exact inverse.

	Type

	True

	
property linear_component

	The linear component of this affine transform.

	Type

	(n_dims, n_dims) ndarray

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

	Type

	int

	
property n_parameters

	n_dims * (n_dims + 1) parameters - every element of the matrix but
the homogeneous part.

	Type

	int

Examples

2D Affine: 6 parameters:

[p1, p3, p5]
[p2, p4, p6]

3D Affine: 12 parameters:

[p1, p4, p7, p10]
[p2, p5, p8, p11]
[p3, p6, p9, p12]

	
property n_points

	The number of points on the target.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

	
property translation_component

	The translation component of this affine transform.

	Type

	(n_dims,) ndarray

DifferentiablePiecewiseAffine

	
class menpofit.transform.DifferentiablePiecewiseAffine(source, target)

	Bases: CachedPWA, DL, DX

A differentiable Piecewise Affine Transformation.

This is composed of a number of triangles defined be a set of source and
target vertices. These vertices are related by a common triangle list.
No limitations on the nature of the triangle list are imposed. Points can
then be mapped via barycentric coordinates from the source to the target
space. Trying to map points that are not contained by any source triangle
throws a TriangleContainmentError, which contains diagnostic information.

The transform can compute its own derivative with respect to spatial changes,
as well as anchor landmark changes.

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dl(points)

	The derivative of the warp with respect to spatial changes in anchor
landmark points or centres, evaluated at points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dl ((n_points, n_centres, n_dims) ndarray) – The Jacobian wrt landmark changes.

d_dl[i, k, m] is the scalar differential change that the
any dimension of the i’th point experiences due to a first order
change in the m’th dimension of the k’th landmark point.

Note that at present this assumes that the change in every
dimension is equal.

	
d_dx(points)

	The first order derivative of the warp with respect to spatial changes
evaluated at points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dx ((n_points, n_dims, n_dims) ndarray) – The Jacobian wrt spatial changes.

d_dx[i, j, k] is the scalar differential change that the
j’th dimension of the i’th point experiences due to a first
order change in the k’th dimension.

It may be the case that the Jacobian is constant across space -
in this case axis zero may have length 1 to allow for
broadcasting.

:raises TriangleContainmentError:: If any point is outside any triangle of this PWA.

	
index_alpha_beta(points)

	Finds for each input point the index of its bounding triangle and the
alpha and beta value for that point in the triangle. Note this
means that the following statements will always be true:

alpha + beta <= 1
alpha >= 0
beta >= 0

for each triangle result.

Trying to map a point that does not exist in a triangle throws a
TriangleContainmentError.

	Parameters

	points ((K, 2) ndarray) – Points to test.

	Returns

	
	tri_index ((L,) ndarray) – Triangle index for each of the points, assigning each
point to it’s containing triangle.

	alpha ((L,) ndarray) – Alpha for containing triangle of each point.

	beta ((L,) ndarray) – Beta for containing triangle of each point.

	Raises

	TriangleContainmentError – All points must be contained in a source triangle. Check
 error.points_outside_source_domain to handle this case.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	type(self)

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property has_true_inverse

	The inverse is true.

	Type

	True

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type

	int or None

	
property n_points

	The number of points on the target.

	Type

	int

	
property n_tris

	The number of triangles in the triangle list.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

	
property trilist

	The triangle list.

	Type

	(n_tris, 3) ndarray

DifferentiableThinPlateSplines

	
class menpofit.transform.DifferentiableThinPlateSplines(source, target, kernel=None)

	Bases: ThinPlateSplines, DL, DX

The Thin Plate Splines (TPS) alignment between 2D source and target
landmarks. The transform can compute its own derivative with respect to
spatial changes, as well as anchor landmark changes.

	Parameters

	
	source ((N, 2) ndarray) – The source points to apply the tps from

	target ((N, 2) ndarray) – The target points to apply the tps to

	kernel (class or None, optional) – The differentiable kernel to apply. Possible options are
DifferentiableR2LogRRBF and DifferentiableR2LogR2RBF. If
None, then DifferentiableR2LogR2RBF is used.

	
aligned_source()

	The result of applying self to source

	Type

	PointCloud

	
alignment_error()

	The Frobenius Norm of the difference between the target and the aligned
source.

	Type

	float

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dl(points)

	Calculates the Jacobian of the TPS warp wrt to the source landmarks
assuming that he target is equal to the source. This is a special
case of the Jacobian wrt to the source landmarks that is used in AAMs
to weight the relative importance of each pixel in the reference
frame wrt to each one of the source landmarks.

	dW_dl = dOmega_dl * k(points)
	= T * d_L**-1_dl * k(points)
= T * -L**-1 dL_dl L**-1 * k(points)

per point
(c, d) = (d, c+3) (c+3, c+3) (c+3, c+3, c, d) (c+3, c+3) (c+3)
(c, d) = (d, c+3) (c+3, c+3, c, d) (c+3,)
(c, d) = (d,) (c, d)
(c, d) = () (c, d)

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	dW/dl ((n_points, n_params, n_dims) ndarray) – The Jacobian of the transform wrt to the source landmarks evaluated
at the previous points and assuming that the target is equal to
the source.

	
d_dx(points)

	The first order derivative of this TPS warp wrt spatial changes
evaluated at points.

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dx ((n_points, n_dims, n_dims) ndarray) – The Jacobian wrt spatial changes.

d_dx[i, j, k] is the scalar differential change that the
j’th dimension of the i’th point experiences due to a first
order change in the k’th dimension.

It may be the case that the Jacobian is constant across space -
in this case axis zero may have length 1 to allow for
broadcasting.

	
pseudoinverse()

	The pseudoinverse of the transform - that is, the transform that
results from swapping source and target, or more formally, negating
the transforms parameters. If the transform has a true inverse this
is returned instead.

	Type

	type(self)

	
set_target(new_target)

	Update this object so that it attempts to recreate the new_target.

	Parameters

	new_target (PointCloud) – The new target that this object should try and regenerate.

	
property has_true_inverse

	False

	Type

	type

	
property n_dims

	The number of dimensions of the target.

	Type

	int

	
property n_dims_output

	The output of the data from the transform.

None if the output of the transform is not dimension specific.

	Type

	int or None

	
property n_points

	The number of points on the target.

	Type

	int

	
property source

	The source PointCloud that is used in the alignment.

The source is not mutable.

	Type

	PointCloud

	
property target

	The current PointCloud that this object produces.

To change the target, use set_target().

	Type

	PointCloud

DifferentiableR2LogR2RBF

	
class menpofit.transform.DifferentiableR2LogR2RBF(c)

	Bases: R2LogR2RBF, DL

The \(r^2 \log{r^2}\) basis function.

The derivative of this function is \(2 r (\log{r^2} + 1)\), where
\(r = \lVert x - c \rVert\).

It can compute its own derivative with respect to landmark changes.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dl(points)

	Apply the derivative of the basis function wrt the centres and the
points given by points. Let points be \(x\), then
\(2(x - c)^T (\log{r^2_{x, l}}+1) = 2(x - c)^T (2\log{r_{x, l}}+1)\)
where \(r_{x, l} = \| x - c \|\).

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dl ((n_points, n_centres, n_dims) ndarray) – The jacobian tensor representing the first order derivative
of the radius from each centre wrt the centre’s position, evaluated
at each point.

	
property n_centres

	The number of centres.

	Type

	int

	
property n_dims

	The RBF can only be applied on points with the same dimensionality as
the centres.

	Type

	int

	
property n_dims_output

	The result of the transform has a dimension (weight) for every centre.

	Type

	int

DifferentiableR2LogRRBF

	
class menpofit.transform.DifferentiableR2LogRRBF(c)

	Bases: R2LogRRBF, DL

Calculates the \(r^2 \log{r}\) basis function.

The derivative of this function is \(r (1 + 2 \log{r})\), where
\(r = \lVert x - c \rVert\).

It can compute its own derivative with respect to landmark changes.

	
apply(x, batch_size=None, **kwargs)

	Applies this transform to x.

If x is Transformable, x will be handed this transform
object to transform itself non-destructively (a transformed copy of the
object will be returned).

If not, x is assumed to be an ndarray. The transformation will be
non-destructive, returning the transformed version.

Any kwargs will be passed to the specific transform _apply()
method.

	Parameters

	
	x (Transformable or (n_points, n_dims) ndarray) – The array or object to be transformed.

	batch_size (int, optional) – If not None, this determines how many items from the numpy
array will be passed through the transform at a time. This is
useful for operations that require large intermediate matrices
to be computed.

	kwargs (dict) – Passed through to _apply().

	Returns

	transformed (type(x)) – The transformed object or array

	
apply_inplace(*args, **kwargs)

	Deprecated as public supported API, use the non-mutating apply()
instead.

For internal performance-specific uses, see _apply_inplace().

	
compose_after(transform)

	Returns a TransformChain that represents this transform
composed after the given transform:

c = a.compose_after(b)
c.apply(p) == a.apply(b.apply(p))

a and b are left unchanged.

This corresponds to the usual mathematical formalism for the compose
operator, o.

	Parameters

	transform (Transform) – Transform to be applied before self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
compose_before(transform)

	Returns a TransformChain that represents this transform
composed before the given transform:

c = a.compose_before(b)
c.apply(p) == b.apply(a.apply(p))

a and b are left unchanged.

	Parameters

	transform (Transform) – Transform to be applied after self

	Returns

	transform (TransformChain) – The resulting transform chain.

	
copy()

	Generate an efficient copy of this object.

Note that Numpy arrays and other Copyable objects on self
will be deeply copied. Dictionaries and sets will be shallow copied,
and everything else will be assigned (no copy will be made).

Classes that store state other than numpy arrays and immutable types
should overwrite this method to ensure all state is copied.

	Returns

	type(self) – A copy of this object

	
d_dl(points)

	The derivative of the basis function wrt the coordinate system
evaluated at points. Let points be \(x\), then
\((x - c)^T (1 + 2\log{r_{x, l}})\), where
\(r_{x, l} = \| x - c \|\).

	Parameters

	points ((n_points, n_dims) ndarray) – The spatial points at which the derivative should be evaluated.

	Returns

	d_dl ((n_points, n_centres, n_dims) ndarray) – The Jacobian wrt landmark changes.

	
property n_centres

	The number of centres.

	Type

	int

	
property n_dims

	The RBF can only be applied on points with the same dimensionality as
the centres.

	Type

	int

	
property n_dims_output

	The result of the transform has a dimension (weight) for every centre.

	Type

	int

menpofit.visualize

Print Utilities

	print_progress

Errors Visualization

	statistics_table

	plot_cumulative_error_distribution

print_progress

	
menpofit.visualize.print_progress(iterable, prefix='', n_items=None, offset=0, show_bar=True, show_count=True, show_eta=True, end_with_newline=True, verbose=True)

	Print the remaining time needed to compute over an iterable.

To use, wrap an existing iterable with this function before processing in
a for loop (see example).

The estimate of the remaining time is based on a moving average of the last
100 items completed in the loop.

This method is identical to menpo.visualize.print_progress, but adds a
verbose flag which allows the printing to be skipped if necessary.

	Parameters

	
	iterable (iterable) – An iterable that will be processed. The iterable is passed through by
this function, with the time taken for each complete iteration logged.

	prefix (str, optional) – If provided a string that will be prepended to the progress report at
each level.

	n_items (int, optional) – Allows for iterator to be a generator whose length will be assumed
to be n_items. If not provided, then iterator needs to be
Sizable.

	offset (int, optional) – Useful in combination with n_items - report back the progress as
if offset items have already been handled. n_items will be left
unchanged.

	show_bar (bool, optional) – If False, The progress bar (e.g. [=========]) will be hidden.

	show_count (bool, optional) – If False, The item count (e.g. (4/25)) will be hidden.

	show_eta (bool, optional) – If False, The estimated time to finish (e.g. - 00:00:03 remaining)
will be hidden.

	end_with_newline (bool, optional) – If False, there will be no new line added at the end of the dynamic
printing. This means the next print statement will overwrite the
dynamic report presented here. Useful if you want to follow up a
print_progress with a second print_progress, where the second
overwrites the first on the same line.

	verbose (bool, optional) – Printing is performed only if set to True.

	Raises

	ValueError – offset provided without n_items

Examples

This for loop:

from time import sleep
for i in print_progress(range(100)):
 sleep(1)

prints a progress report of the form:

[=============] 70% (7/10) - 00:00:03 remaining

statistics_table

	
menpofit.visualize.statistics_table(errors, method_names, auc_max_error, auc_error_step, auc_min_error=0.0, stats_types=None, stats_names=None, sort_by=None, precision=4)

	Function that generates a table with statistical measures on the fitting
results of various methods using pandas. It supports multiple types of
statistical measures.

Note that the returned object is a pandas table which can be further
converted to Latex tabular or simply a string. See the examples for
more details.

	Parameters

	
	errors (list of list of float) – A list that contains lists of float with the errors per method.

	method_names (list of str) – The list with the names that will appear for each method. Note that
it must have the same length as errors.

	auc_max_error (float) – The maximum error value for computing the area under the curve.

	auc_error_step (float) – The sampling step of the error bins for computing the area under the
curve.

	auc_min_error (float, optional) – The minimum error value for computing the area under the curve.

	stats_types (list of str or None, optional) – The types of statistical measures to compute. Possible options are:

	Value

	Description

	mean

	The mean value of the errors.

	std

	The standard deviation of the errors.

	median

	The median value of the errors.

	mad

	The median absolute deviation of the errors.

	max

	The max value of the errors.

	auc

	The area under the curve based on the CED of the errors.

	fr

	The failure rate (percentage of images that failed).

If None, then all of them will be used with the above order.

	stats_names (list of str, optional) – The list with the names that will appear for each statistical measure
type selected in stats_types. Note that it must have the same
length as stats_types.

	sort_by (str or None, optional) – The column to use for sorting the methods. If None, then no
sorting is performed and the methods will appear in the provided
order of method_names. Possible options are:

	Value

	Description

	mean

	The mean value of the errors.

	std

	The standard deviation of the errors.

	median

	The median value of the errors.

	mad

	The median absolute deviation of the errors.

	max

	The max value of the errors.

	auc

	The area under the curve based on the CED of the errors.

	fr

	The failure rate (percentage of images that failed).

	precision (int, optional) – The precision of the reported values, i.e. the number of decimals.

	Raises

	
	ValueError – stat_type must be selected from [mean, std, median, mad, max, auc, fr]

	ValueError – sort_by must be selected from [mean, std, median, mad, max, auc, fr]

	ValueError – stats_types and stats_names must have the same length

	Returns

	table (pandas.DataFrame) – The pandas table. It can be further converted to various format,
such as Latex tabular or str.

Examples

Let us create some errors for 3 methods sampled from Normal distributions
with different mean and standard deviations:

import numpy as np
from menpofit.visualize import statistics_table

method_names = ['Method_1', 'Method_2', 'Method_3']
errors = [list(np.random.normal(0.07, 0.02, 400)),
 list(np.random.normal(0.06, 0.03, 400)),
 list(np.random.normal(0.08, 0.04, 400))]

We can create a pandas DataFrame as:

tab = statistics_table(errors, method_names, auc_max_error=0.1,
 auc_error_step=0.001, sort_by='auc')
tab

Pandas offers excellent functionalities. For example, the table can be
converted to an str as:

print(tab.to_string())

or to a Latex tabular as:

print(tab.to_latex())

plot_cumulative_error_distribution

	
menpofit.visualize.plot_cumulative_error_distribution(errors, error_range=None, figure_id=None, new_figure=False, title='Cumulative Error Distribution', x_label='Normalized Point-to-Point Error', y_label='Images Proportion', legend_entries=None, render_lines=True, line_colour=None, line_style='-', line_width=2, render_markers=True, marker_style='s', marker_size=7, marker_face_colour='w', marker_edge_colour=None, marker_edge_width=2, render_legend=True, legend_title=None, legend_font_name='sans-serif', legend_font_style='normal', legend_font_size=10, legend_font_weight='normal', legend_marker_scale=1.0, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=1.0, legend_n_columns=1, legend_horizontal_spacing=1.0, legend_vertical_spacing=1.0, legend_border=True, legend_border_padding=0.5, legend_shadow=False, legend_rounded_corners=False, render_axes=True, axes_font_name='sans-serif', axes_font_size=10, axes_font_style='normal', axes_font_weight='normal', axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), render_grid=True, grid_line_style='--', grid_line_width=0.5)

	Plot the cumulative error distribution (CED) of the provided fitting errors.

	Parameters

	
	errors (list of lists) – A list with lists of fitting errors. A separate CED curve will be
rendered for each errors list.

	error_range (list of float with length 3, optional) – Specifies the horizontal axis range, i.e.

error_range[0] = min_error
error_range[1] = max_error
error_range[2] = error_step

If None, then 'error_range = [0., 0.101, 0.005]'.

	figure_id (object, optional) – The id of the figure to be used.

	new_figure (bool, optional) – If True, a new figure is created.

	title (str, optional) – The figure’s title.

	x_label (str, optional) – The label of the horizontal axis.

	y_label (str, optional) – The label of the vertical axis.

	legend_entries (list of `str or None, optional) – If list of str, it must have the same length as errors list and
each str will be used to name each curve. If None, the CED curves
will be named as ‘Curve %d’.

	render_lines (bool or list of bool, optional) – If True, the line will be rendered. If bool, this value will be
used for all curves. If list, a value must be specified for each
fitting errors curve, thus it must have the same length as errors.

	line_colour (colour or list of colour or None, optional) – The colour of the lines. If not a list, this value will be
used for all curves. If list, a value must be specified for each
curve, thus it must have the same length as y_axis. If None, the
colours will be linearly sampled from jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	line_style ({'-', '--', '-.', ':'} or list of those, optional) – The style of the lines. If not a list, this value will be used for all
curves. If list, a value must be specified for each curve, thus it
must have the same length as errors.

	line_width (float or list of float, optional) – The width of the lines. If float, this value will be used for all
curves. If list, a value must be specified for each curve, thus it
must have the same length as errors.

	render_markers (bool or list of bool, optional) – If True, the markers will be rendered. If bool, this value will be
used for all curves. If list, a value must be specified for each
curve, thus it must have the same length as errors.

	marker_style (marker or list of markers, optional) – The style of the markers. If not a list, this value will be used for
all curves. If list, a value must be specified for each curve, thus it
must have the same length as errors.
Example marker options

{'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's',
 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'}

	marker_size (int or list of int, optional) – The size of the markers in points. If int, this value will be used
for all curves. If list, a value must be specified for each curve, thus
it must have the same length as errors.

	marker_face_colour (colour or list of colour or None, optional) – The face (filling) colour of the markers. If not a list, this value
will be used for all curves. If list, a value must be specified for
each curve, thus it must have the same length as errors. If None,
the colours will be linearly sampled from jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_colour (colour or list of colour or None, optional) – The edge colour of the markers. If not a list, this value will be used
for all curves. If list, a value must be specified for each curve, thus
it must have the same length as errors. If None, the colours will
be linearly sampled from jet colormap.
Example colour options are

{'r', 'g', 'b', 'c', 'm', 'k', 'w'}
or
(3,) ndarray

	marker_edge_width (float or list of float, optional) – The width of the markers’ edge. If float, this value will be used for
all curves. If list, a value must be specified for each curve, thus it
must have the same length as errors.

	render_legend (bool, optional) – If True, the legend will be rendered.

	legend_title (str, optional) – The title of the legend.

	legend_font_name (See below, optional) – The font of the legend.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	legend_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the legend.

	legend_font_size (int, optional) – The font size of the legend.

	legend_font_weight (See below, optional) – The font weight of the legend.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	legend_marker_scale (float, optional) – The relative size of the legend markers with respect to the original

	legend_location (int, optional) – The location of the legend. The predefined values are:

	’best’

	0

	’upper right’

	1

	’upper left’

	2

	’lower left’

	3

	’lower right’

	4

	’right’

	5

	’center left’

	6

	’center right’

	7

	’lower center’

	8

	’upper center’

	9

	’center’

	10

	legend_bbox_to_anchor ((float, float), optional) – The bbox that the legend will be anchored.

	legend_border_axes_pad (float, optional) – The pad between the axes and legend border.

	legend_n_columns (int, optional) – The number of the legend’s columns.

	legend_horizontal_spacing (float, optional) – The spacing between the columns.

	legend_vertical_spacing (float, optional) – The vertical space between the legend entries.

	legend_border (bool, optional) – If True, a frame will be drawn around the legend.

	legend_border_padding (float, optional) – The fractional whitespace inside the legend border.

	legend_shadow (bool, optional) – If True, a shadow will be drawn behind legend.

	legend_rounded_corners (bool, optional) – If True, the frame’s corners will be rounded (fancybox).

	render_axes (bool, optional) – If True, the axes will be rendered.

	axes_font_name (See below, optional) – The font of the axes.
Example options

{'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}

	axes_font_size (int, optional) – The font size of the axes.

	axes_font_style ({'normal', 'italic', 'oblique'}, optional) – The font style of the axes.

	axes_font_weight (See below, optional) – The font weight of the axes.
Example options

{'ultralight', 'light', 'normal', 'regular', 'book', 'medium',
 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
 'extra bold', 'black'}

	axes_x_limits (float or (float, float) or None, optional) – The limits of the x axis. If float, then it sets padding on the
right and left of the graph as a percentage of the curves’ width. If
tuple or list, then it defines the axis limits. If None, then
the limits are set to (0., error_range[1]).

	axes_y_limits (float or (float, float) or None, optional) – The limits of the y axis. If float, then it sets padding on the
top and bottom of the graph as a percentage of the curves’ height. If
tuple or list, then it defines the axis limits. If None, then
the limits are set to (0., 1.).

	axes_x_ticks (list or tuple or None, optional) – The ticks of the x axis.

	axes_y_ticks (list or tuple or None, optional) – The ticks of the y axis.

	figure_size ((float, float) or None, optional) – The size of the figure in inches.

	render_grid (bool, optional) – If True, the grid will be rendered.

	grid_line_style ({'-', '--', '-.', ':'}, optional) – The style of the grid lines.

	grid_line_width (float, optional) – The width of the grid lines.

	Raises

	ValueError – legend_entries list has different length than errors list

	Returns

	viewer (menpo.visualize.GraphPlotter) – The viewer object.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	AAM (class in menpofit.aam.base)

 	aam() (menpofit.aam.LucasKanadeAAMFitter property)

 	AAMAlgorithmResult (class in menpofit.aam.result)

 	AAMResult (class in menpofit.aam.result)

 	ActiveShapeModel (class in menpofit.clm)

 	align_shape_with_bounding_box() (in module menpofit.fitter)

 	align_shapes() (in module menpofit.builder)

 	aligned_source() (menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	alignment_error() (menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	AlternatingForwardCompositional (class in menpofit.aam)

 	AlternatingInverseCompositional (class in menpofit.aam)

 	AlternatingRegularisedLandmarkMeanShift (class in menpofit.unified_aam_clm)

 	appearance_costs() (menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	appearance_model() (menpofit.aam.AlternatingForwardCompositional property)

 	(menpofit.aam.AlternatingInverseCompositional property)

 	(menpofit.aam.AppearanceWeightsGaussNewton property)

 	(menpofit.aam.AppearanceWeightsNewton property)

 	(menpofit.aam.MeanTemplateGaussNewton property)

 	(menpofit.aam.MeanTemplateNewton property)

 	(menpofit.aam.ModifiedAlternatingForwardCompositional property)

 	(menpofit.aam.ModifiedAlternatingInverseCompositional property)

 	(menpofit.aam.ProjectOutForwardCompositional property)

 	(menpofit.aam.ProjectOutGaussNewton property)

 	(menpofit.aam.ProjectOutInverseCompositional property)

 	(menpofit.aam.ProjectOutNewton property)

 	(menpofit.aam.SimultaneousForwardCompositional property)

 	(menpofit.aam.SimultaneousInverseCompositional property)

 	(menpofit.aam.WibergForwardCompositional property)

 	(menpofit.aam.WibergInverseCompositional property)

 	(menpofit.aps.Forward property)

 	(menpofit.aps.Inverse property)

 	appearance_parameters() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	appearance_reconstructions() (menpofit.aam.base.AAM method)

 	(menpofit.aam.LinearAAM method)

 	(menpofit.aam.LinearMaskedAAM method)

 	(menpofit.aam.LucasKanadeAAMFitter method)

 	(menpofit.aam.MaskedAAM method)

 	(menpofit.aam.PatchAAM method)

 	(menpofit.unified_aam_clm.UnifiedAAMCLMFitter method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	
 	AppearanceWeightsGaussNewton (class in menpofit.aam)

 	AppearanceWeightsNewton (class in menpofit.aam)

 	apply() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableR2LogR2RBF method)

 	(menpofit.transform.DifferentiableR2LogRRBF method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	apply_inplace() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableR2LogR2RBF method)

 	(menpofit.transform.DifferentiableR2LogRRBF method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	aps() (menpofit.aps.GaussNewtonAPSFitter property)

 	APSAlgorithmResult (class in menpofit.aps.result)

 	APSResult (class in menpofit.aps.result)

 	area_under_curve_and_failure_rate() (in module menpofit.error)

 	as_non_alignment() (menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	as_vector() (menpofit.modelinstance.GlobalPDM method)

 	(menpofit.modelinstance.GlobalSimilarityModel method)

 	(menpofit.modelinstance.ModelInstance method)

 	(menpofit.modelinstance.OrthoPDM method)

 	(menpofit.modelinstance.PDM method)

 	(menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	ATM (class in menpofit.atm.base)

 	atm() (menpofit.atm.LucasKanadeATMFitter property)

B

 	
 	bb_area() (in module menpofit.error)

 	bb_avg_edge_length() (in module menpofit.error)

 	bb_avg_edge_length_49_euclidean_error() (in module menpofit.error)

 	bb_avg_edge_length_68_euclidean_error() (in module menpofit.error)

 	bb_diagonal() (in module menpofit.error)

 	bb_perimeter() (in module menpofit.error)

 	build_fitter_interfaces() (menpofit.aam.base.AAM method)

 	(menpofit.aam.LinearAAM method)

 	(menpofit.aam.LinearMaskedAAM method)

 	(menpofit.aam.MaskedAAM method)

 	(menpofit.aam.PatchAAM method)

 	(menpofit.atm.LinearATM method)

 	(menpofit.atm.LinearMaskedATM method)

 	(menpofit.atm.MaskedATM method)

 	(menpofit.atm.PatchATM method)

 	(menpofit.atm.base.ATM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	
 	build_patch_reference_frame() (in module menpofit.builder)

 	build_reference_frame() (in module menpofit.builder)

C

 	
 	check_algorithm_cls() (in module menpofit.checks)

 	check_callable() (in module menpofit.checks)

 	check_diagonal() (in module menpofit.checks)

 	check_graph() (in module menpofit.checks)

 	check_landmark_trilist() (in module menpofit.checks)

 	check_max_components() (in module menpofit.checks)

 	check_max_iters() (in module menpofit.checks)

 	check_model() (in module menpofit.checks)

 	check_multi_scale_param() (in module menpofit.checks)

 	check_patch_shape() (in module menpofit.checks)

 	check_sampling() (in module menpofit.checks)

 	check_scales() (in module menpofit.checks)

 	check_trilist() (in module menpofit.checks)

 	CLM (class in menpofit.clm)

 	clm() (menpofit.clm.GradientDescentCLMFitter property)

 	compose_after() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableR2LogR2RBF method)

 	(menpofit.transform.DifferentiableR2LogRRBF method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	compose_after_from_vector_inplace() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.OrthoMDTransform method)

 	compose_after_inplace() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	compose_before() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableR2LogR2RBF method)

 	(menpofit.transform.DifferentiableR2LogRRBF method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	compose_before_inplace() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	
 	composes_inplace_with() (menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	composes_with() (menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	compute_cumulative_error() (in module menpofit.error)

 	compute_features() (in module menpofit.builder)

 	compute_reference_shape() (in module menpofit.builder)

 	compute_statistical_measures() (in module menpofit.error)

 	copy() (menpofit.modelinstance.GlobalPDM method)

 	(menpofit.modelinstance.GlobalSimilarityModel method)

 	(menpofit.modelinstance.ModelInstance method)

 	(menpofit.modelinstance.OrthoPDM method)

 	(menpofit.modelinstance.PDM method)

 	(menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableR2LogR2RBF method)

 	(menpofit.transform.DifferentiableR2LogRRBF method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	CorrelationFilterExpertEnsemble (class in menpofit.clm)

 	cost_closure() (menpofit.lk.ECC method)

 	(menpofit.lk.FourierSSD method)

 	(menpofit.lk.GradientCorrelation method)

 	(menpofit.lk.GradientImages method)

 	(menpofit.lk.SSD method)

 	costs() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.NonParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

D

 	
 	d_dl() (menpofit.differentiable.DL method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableR2LogR2RBF method)

 	(menpofit.transform.DifferentiableR2LogRRBF method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	d_dp() (menpofit.differentiable.DP method)

 	(menpofit.modelinstance.GlobalPDM method)

 	(menpofit.modelinstance.GlobalSimilarityModel method)

 	(menpofit.modelinstance.ModelInstance method)

 	(menpofit.modelinstance.OrthoPDM method)

 	(menpofit.modelinstance.PDM method)

 	(menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	d_dx() (menpofit.differentiable.DX method)

 	(menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	decompose() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	deformation_costs() (menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	deformation_model() (menpofit.aps.Forward property)

 	(menpofit.aps.Inverse property)

 	dense_target() (menpofit.transform.LinearOrthoMDTransform property)

 	densify_shapes() (in module menpofit.builder)

 	DifferentiableAffine (class in menpofit.transform)

 	DifferentiableAlignmentAffine (class in menpofit.transform)

 	
 	DifferentiableAlignmentSimilarity (class in menpofit.transform)

 	DifferentiablePiecewiseAffine (class in menpofit.transform)

 	DifferentiableR2LogR2RBF (class in menpofit.transform)

 	DifferentiableR2LogRRBF (class in menpofit.transform)

 	DifferentiableSimilarity (class in menpofit.transform)

 	DifferentiableThinPlateSplines (class in menpofit.transform)

 	displacements() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	displacements_stats() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	distance_two_indices() (in module menpofit.error)

 	DL (class in menpofit.differentiable)

 	DlibERT (class in menpofit.dlib)

 	DlibWrapper (class in menpofit.dlib)

 	DP (class in menpofit.differentiable)

 	DX (class in menpofit.differentiable)

E

 	
 	ECC (class in menpofit.lk)

 	errors() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	
 	euclidean_bb_normalised_error() (in module menpofit.error)

 	euclidean_distance_indexed_normalised_error() (in module menpofit.error)

 	euclidean_distance_normalised_error() (in module menpofit.error)

 	euclidean_error() (in module menpofit.error)

 	extract_patches() (in module menpofit.builder)

F

 	
 	final_error() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.result.Result method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	final_shape() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.NonParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.result.Result property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	fit_from_bb() (menpofit.aam.LucasKanadeAAMFitter method)

 	(menpofit.aam.SupervisedDescentAAMFitter method)

 	(menpofit.aps.GaussNewtonAPSFitter method)

 	(menpofit.atm.LucasKanadeATMFitter method)

 	(menpofit.clm.GradientDescentCLMFitter method)

 	(menpofit.dlib.DlibERT method)

 	(menpofit.dlib.DlibWrapper method)

 	(menpofit.fitter.MultiScaleNonParametricFitter method)

 	(menpofit.fitter.MultiScaleParametricFitter method)

 	(menpofit.io.PickleWrappedFitter method)

 	(menpofit.lk.LucasKanadeFitter method)

 	(menpofit.sdm.RegularizedSDM method)

 	(menpofit.sdm.SupervisedDescentFitter method)

 	(menpofit.unified_aam_clm.UnifiedAAMCLMFitter method)

 	fit_from_shape() (menpofit.aam.LucasKanadeAAMFitter method)

 	(menpofit.aam.SupervisedDescentAAMFitter method)

 	(menpofit.aps.GaussNewtonAPSFitter method)

 	(menpofit.atm.LucasKanadeATMFitter method)

 	(menpofit.clm.GradientDescentCLMFitter method)

 	(menpofit.dlib.DlibERT method)

 	(menpofit.dlib.DlibWrapper method)

 	(menpofit.fitter.MultiScaleNonParametricFitter method)

 	(menpofit.fitter.MultiScaleParametricFitter method)

 	(menpofit.io.PickleWrappedFitter method)

 	(menpofit.lk.LucasKanadeFitter method)

 	(menpofit.sdm.RegularizedSDM method)

 	(menpofit.sdm.SupervisedDescentFitter method)

 	(menpofit.unified_aam_clm.UnifiedAAMCLMFitter method)

 	
 	Forward (class in menpofit.aps)

 	ForwardAdditive (class in menpofit.lk)

 	ForwardCompositional (class in menpofit.atm)

 	(class in menpofit.lk)

 	FourierSSD (class in menpofit.lk)

 	frequency_filter_images() (menpofit.clm.CorrelationFilterExpertEnsemble property)

 	from_vector() (menpofit.modelinstance.GlobalPDM method)

 	(menpofit.modelinstance.GlobalSimilarityModel method)

 	(menpofit.modelinstance.ModelInstance method)

 	(menpofit.modelinstance.OrthoPDM method)

 	(menpofit.modelinstance.PDM method)

 	(menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	from_vector_inplace() (menpofit.modelinstance.GlobalPDM method)

 	(menpofit.modelinstance.GlobalSimilarityModel method)

 	(menpofit.modelinstance.ModelInstance method)

 	(menpofit.modelinstance.OrthoPDM method)

 	(menpofit.modelinstance.PDM method)

 	(menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	FullyParametricMeanTemplateNewton (class in menpofit.sdm)

 	FullyParametricProjectOutGaussNewton (class in menpofit.sdm)

 	FullyParametricProjectOutNewton (class in menpofit.sdm)

 	FullyParametricProjectOutOPP (class in menpofit.sdm)

 	FullyParametricWeightsNewton (class in menpofit.sdm)

G

 	
 	GaussNewtonAPSFitter (class in menpofit.aps)

 	generate_perturbations_from_gt() (in module menpofit.fitter)

 	GenerativeAPS (class in menpofit.aps)

 	global_parameters() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	GlobalPDM (class in menpofit.modelinstance)

 	GlobalSimilarityModel (class in menpofit.modelinstance)

 	gradient() (menpofit.lk.ECC class method)

 	(menpofit.lk.FourierSSD class method)

 	(menpofit.lk.GradientCorrelation class method)

 	(menpofit.lk.GradientImages class method)

 	(menpofit.lk.SSD class method)

 	GradientCorrelation (class in menpofit.lk)

 	
 	GradientDescentCLMFitter (class in menpofit.clm)

 	GradientImages (class in menpofit.lk)

 	gt_shape() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.NonParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.result.Result property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

H

 	
 	h_matrix() (menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	h_matrix_is_mutable() (menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	has_nan_values() (menpofit.modelinstance.GlobalPDM method)

 	(menpofit.modelinstance.GlobalSimilarityModel method)

 	(menpofit.modelinstance.ModelInstance method)

 	(menpofit.modelinstance.OrthoPDM method)

 	(menpofit.modelinstance.PDM method)

 	(menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	has_true_inverse() (menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiablePiecewiseAffine property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	(menpofit.transform.DifferentiableThinPlateSplines property)

 	(menpofit.transform.OrthoMDTransform property)

 	
 	hessian() (menpofit.lk.ECC method)

 	(menpofit.lk.FourierSSD method)

 	(menpofit.lk.GradientCorrelation method)

 	(menpofit.lk.GradientImages method)

 	(menpofit.lk.SSD method)

 	holistic_features() (menpofit.aam.LucasKanadeAAMFitter property)

 	(menpofit.aam.SupervisedDescentAAMFitter property)

 	(menpofit.aps.GaussNewtonAPSFitter property)

 	(menpofit.atm.LucasKanadeATMFitter property)

 	(menpofit.clm.GradientDescentCLMFitter property)

 	(menpofit.dlib.DlibERT property)

 	(menpofit.fitter.MultiScaleNonParametricFitter property)

 	(menpofit.fitter.MultiScaleParametricFitter property)

 	(menpofit.lk.LucasKanadeFitter property)

 	(menpofit.sdm.RegularizedSDM property)

 	(menpofit.sdm.SupervisedDescentFitter property)

 	(menpofit.unified_aam_clm.UnifiedAAMCLMFitter property)

 	HolisticAAM (in module menpofit.aam)

 	HolisticATM (in module menpofit.atm)

 	homogeneous_parameters() (menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

I

 	
 	IIRLRegression (class in menpofit.math)

 	image() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.NonParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.result.Result property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	imccf() (in module menpofit.math)

 	imosse() (in module menpofit.math)

 	increment() (menpofit.aam.AppearanceWeightsGaussNewton method)

 	(menpofit.aam.AppearanceWeightsNewton method)

 	(menpofit.aam.LinearAAM method)

 	(menpofit.aam.LinearMaskedAAM method)

 	(menpofit.aam.MaskedAAM method)

 	(menpofit.aam.MeanTemplateGaussNewton method)

 	(menpofit.aam.MeanTemplateNewton method)

 	(menpofit.aam.PatchAAM method)

 	(menpofit.aam.ProjectOutGaussNewton method)

 	(menpofit.aam.ProjectOutNewton method)

 	(menpofit.aam.SupervisedDescentAAMFitter method)

 	(menpofit.aam.base.AAM method)

 	(menpofit.aps.GenerativeAPS method)

 	(menpofit.atm.LinearATM method)

 	(menpofit.atm.LinearMaskedATM method)

 	(menpofit.atm.MaskedATM method)

 	(menpofit.atm.PatchATM method)

 	(menpofit.atm.base.ATM method)

 	(menpofit.clm.CLM method)

 	(menpofit.clm.CorrelationFilterExpertEnsemble method)

 	(menpofit.clm.IncrementalCorrelationFilterThinWrapper method)

 	(menpofit.math.IIRLRegression method)

 	(menpofit.math.IRLRegression method)

 	(menpofit.math.OPPRegression method)

 	(menpofit.math.OptimalLinearRegression method)

 	(menpofit.math.PCRRegression method)

 	(menpofit.modelinstance.GlobalPDM method)

 	(menpofit.modelinstance.OrthoPDM method)

 	(menpofit.modelinstance.PDM method)

 	(menpofit.sdm.FullyParametricMeanTemplateNewton method)

 	(menpofit.sdm.FullyParametricProjectOutGaussNewton method)

 	(menpofit.sdm.FullyParametricProjectOutNewton method)

 	(menpofit.sdm.FullyParametricProjectOutOPP method)

 	(menpofit.sdm.FullyParametricWeightsNewton method)

 	(menpofit.sdm.NonParametricGaussNewton method)

 	(menpofit.sdm.NonParametricNewton method)

 	(menpofit.sdm.NonParametricOPPRegression method)

 	(menpofit.sdm.NonParametricOptimalRegression method)

 	(menpofit.sdm.NonParametricPCRRegression method)

 	(menpofit.sdm.ParametricAppearanceMeanTemplateGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceMeanTemplateNewton method)

 	(menpofit.sdm.ParametricAppearanceProjectOutGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceProjectOutNewton method)

 	(menpofit.sdm.ParametricAppearanceWeightsGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceWeightsNewton method)

 	(menpofit.sdm.ParametricShapeGaussNewton method)

 	(menpofit.sdm.ParametricShapeNewton method)

 	(menpofit.sdm.ParametricShapeOPPRegression method)

 	(menpofit.sdm.ParametricShapeOptimalRegression method)

 	(menpofit.sdm.ParametricShapePCRRegression method)

 	(menpofit.sdm.RegularizedSDM method)

 	(menpofit.sdm.SupervisedDescentFitter method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	
 	IncrementalCorrelationFilterThinWrapper (class in menpofit.clm)

 	index_alpha_beta() (menpofit.transform.DifferentiablePiecewiseAffine method)

 	init_from_2d_shear() (menpofit.transform.DifferentiableAffine class method)

 	(menpofit.transform.DifferentiableAlignmentAffine class method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity class method)

 	(menpofit.transform.DifferentiableSimilarity class method)

 	init_identity() (menpofit.transform.DifferentiableAffine class method)

 	(menpofit.transform.DifferentiableAlignmentAffine class method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity class method)

 	(menpofit.transform.DifferentiableSimilarity class method)

 	initial_error() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.result.Result method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	initial_shape() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.NonParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.result.Result property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	instance() (menpofit.aam.base.AAM method)

 	(menpofit.aam.LinearAAM method)

 	(menpofit.aam.LinearMaskedAAM method)

 	(menpofit.aam.MaskedAAM method)

 	(menpofit.aam.PatchAAM method)

 	(menpofit.aps.GenerativeAPS method)

 	(menpofit.atm.LinearATM method)

 	(menpofit.atm.LinearMaskedATM method)

 	(menpofit.atm.MaskedATM method)

 	(menpofit.atm.PatchATM method)

 	(menpofit.atm.base.ATM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	Inverse (class in menpofit.aps)

 	InverseCompositional (class in menpofit.atm)

 	(class in menpofit.lk)

 	IRLRegression (class in menpofit.math)

 	is_iterative() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.NonParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.result.Result property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

J

 	
 	Jp() (menpofit.transform.OrthoMDTransform method)

L

 	
 	linear_component() (menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	LinearAAM (class in menpofit.aam)

 	LinearATM (class in menpofit.atm)

 	LinearMaskedAAM (class in menpofit.aam)

 	
 	LinearMaskedATM (class in menpofit.atm)

 	LinearOrthoMDTransform (class in menpofit.transform)

 	load_balanced_frontal_face_fitter() (in module menpofit.aam)

 	LucasKanadeAAMFitter (class in menpofit.aam)

 	LucasKanadeAlgorithmResult (class in menpofit.lk.result)

 	LucasKanadeATMFitter (class in menpofit.atm)

 	LucasKanadeFitter (class in menpofit.lk)

 	LucasKanadeResult (class in menpofit.lk.result)

M

 	
 	mad() (in module menpofit.error)

 	MaskedAAM (class in menpofit.aam)

 	MaskedATM (class in menpofit.atm)

 	mccf() (in module menpofit.math)

 	mean_pupil_49_error() (in module menpofit.error)

 	mean_pupil_68_error() (in module menpofit.error)

 	MeanTemplateGaussNewton (class in menpofit.aam)

 	MeanTemplateNewton (class in menpofit.aam)

 	MenpoFitBuilderWarning (class in menpofit.builder)

 	
 	MenpoFitModelBuilderWarning (class in menpofit.builder)

 	ModelInstance (class in menpofit.modelinstance)

 	ModifiedAlternatingForwardCompositional (class in menpofit.aam)

 	ModifiedAlternatingInverseCompositional (class in menpofit.aam)

 	mosse() (in module menpofit.math)

 	MultiScaleNonParametricFitter (class in menpofit.fitter)

 	MultiScaleNonParametricIterativeResult (class in menpofit.result)

 	MultiScaleParametricFitter (class in menpofit.fitter)

 	MultiScaleParametricIterativeResult (class in menpofit.result)

N

 	
 	n_active_components() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.modelinstance.PDM property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	n_centres() (menpofit.transform.DifferentiableR2LogR2RBF property)

 	(menpofit.transform.DifferentiableR2LogRRBF property)

 	n_dims() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.GlobalSimilarityModel property)

 	(menpofit.modelinstance.ModelInstance property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.modelinstance.PDM property)

 	(menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiablePiecewiseAffine property)

 	(menpofit.transform.DifferentiableR2LogR2RBF property)

 	(menpofit.transform.DifferentiableR2LogRRBF property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	(menpofit.transform.DifferentiableThinPlateSplines property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	(menpofit.transform.OrthoMDTransform property)

 	n_dims_output() (menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiablePiecewiseAffine property)

 	(menpofit.transform.DifferentiableR2LogR2RBF property)

 	(menpofit.transform.DifferentiableR2LogRRBF property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	(menpofit.transform.DifferentiableThinPlateSplines property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	(menpofit.transform.OrthoMDTransform property)

 	n_experts() (menpofit.clm.CorrelationFilterExpertEnsemble property)

 	n_global_parameters() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	n_iters() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.NonParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	n_iters_per_scale() (menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	n_landmarks() (menpofit.transform.LinearOrthoMDTransform property)

 	n_parameters() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.GlobalSimilarityModel property)

 	(menpofit.modelinstance.ModelInstance property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.modelinstance.PDM property)

 	(menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	(menpofit.transform.OrthoMDTransform property)

 	
 	n_points() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.GlobalSimilarityModel property)

 	(menpofit.modelinstance.ModelInstance property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.modelinstance.PDM property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiablePiecewiseAffine property)

 	(menpofit.transform.DifferentiableThinPlateSplines property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	(menpofit.transform.OrthoMDTransform property)

 	n_sample_offsets() (menpofit.clm.CorrelationFilterExpertEnsemble property)

 	n_scales() (menpofit.aam.base.AAM property)

 	(menpofit.aam.LinearAAM property)

 	(menpofit.aam.LinearMaskedAAM property)

 	(menpofit.aam.LucasKanadeAAMFitter property)

 	(menpofit.aam.MaskedAAM property)

 	(menpofit.aam.PatchAAM property)

 	(menpofit.aam.SupervisedDescentAAMFitter property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.GaussNewtonAPSFitter property)

 	(menpofit.aps.GenerativeAPS property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.atm.LinearATM property)

 	(menpofit.atm.LinearMaskedATM property)

 	(menpofit.atm.LucasKanadeATMFitter property)

 	(menpofit.atm.MaskedATM property)

 	(menpofit.atm.PatchATM property)

 	(menpofit.atm.base.ATM property)

 	(menpofit.clm.CLM property)

 	(menpofit.clm.GradientDescentCLMFitter property)

 	(menpofit.dlib.DlibERT property)

 	(menpofit.fitter.MultiScaleNonParametricFitter property)

 	(menpofit.fitter.MultiScaleParametricFitter property)

 	(menpofit.lk.LucasKanadeFitter property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.sdm.RegularizedSDM property)

 	(menpofit.sdm.SupervisedDescentFitter property)

 	(menpofit.unified_aam_clm.UnifiedAAMCLMFitter property)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	n_tris() (menpofit.transform.DifferentiablePiecewiseAffine property)

 	n_weights() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.GlobalSimilarityModel property)

 	(menpofit.modelinstance.ModelInstance property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.modelinstance.PDM property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	noisy_alignment_similarity_transform() (in module menpofit.fitter)

 	noisy_shape_from_bounding_box() (in module menpofit.fitter)

 	noisy_shape_from_shape() (in module menpofit.fitter)

 	noisy_target_alignment_transform() (in module menpofit.fitter)

 	NonParametricGaussNewton (class in menpofit.sdm)

 	NonParametricIterativeResult (class in menpofit.result)

 	NonParametricNewton (class in menpofit.sdm)

 	NonParametricOPPRegression (class in menpofit.sdm)

 	NonParametricOptimalRegression (class in menpofit.sdm)

 	NonParametricPCRRegression (class in menpofit.sdm)

 	normalization_wrt_reference_shape() (in module menpofit.builder)

O

 	
 	OPPRegression (class in menpofit.math)

 	OptimalLinearRegression (class in menpofit.math)

 	OrthoMDTransform (class in menpofit.transform)

 	
 	OrthoPDM (class in menpofit.modelinstance)

 	outer_eye_corner_49_euclidean_error() (in module menpofit.error)

 	outer_eye_corner_51_euclidean_error() (in module menpofit.error)

 	outer_eye_corner_68_euclidean_error() (in module menpofit.error)

P

 	
 	padded_size() (menpofit.clm.CorrelationFilterExpertEnsemble property)

 	ParametricAppearanceMeanTemplateGuassNewton (class in menpofit.sdm)

 	ParametricAppearanceMeanTemplateNewton (class in menpofit.sdm)

 	ParametricAppearanceProjectOutGuassNewton (class in menpofit.sdm)

 	ParametricAppearanceProjectOutNewton (class in menpofit.sdm)

 	ParametricAppearanceWeightsGuassNewton (class in menpofit.sdm)

 	ParametricAppearanceWeightsNewton (class in menpofit.sdm)

 	ParametricIterativeResult (class in menpofit.result)

 	ParametricShapeGaussNewton (class in menpofit.sdm)

 	ParametricShapeNewton (class in menpofit.sdm)

 	ParametricShapeOPPRegression (class in menpofit.sdm)

 	ParametricShapeOptimalRegression (class in menpofit.sdm)

 	ParametricShapePCRRegression (class in menpofit.sdm)

 	PatchAAM (class in menpofit.aam)

 	PatchATM (class in menpofit.atm)

 	PCRRegression (class in menpofit.math)

 	PDM (class in menpofit.modelinstance)

 	PickleWrappedFitter (class in menpofit.io)

 	plot_costs() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	plot_cumulative_error_distribution() (in module menpofit.visualize)

 	plot_displacements() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	
 	plot_errors() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	predict() (menpofit.math.IIRLRegression method)

 	(menpofit.math.IRLRegression method)

 	(menpofit.math.OPPRegression method)

 	(menpofit.math.OptimalLinearRegression method)

 	(menpofit.math.PCRRegression method)

 	predict_probability() (menpofit.clm.CorrelationFilterExpertEnsemble method)

 	predict_response() (menpofit.clm.CorrelationFilterExpertEnsemble method)

 	print_progress() (in module menpofit.visualize)

 	project() (menpofit.aam.AppearanceWeightsGaussNewton method)

 	(menpofit.aam.AppearanceWeightsNewton method)

 	project_out() (menpofit.aam.ProjectOutForwardCompositional method)

 	(menpofit.aam.ProjectOutGaussNewton method)

 	(menpofit.aam.ProjectOutInverseCompositional method)

 	(menpofit.aam.ProjectOutNewton method)

 	ProjectOutForwardCompositional (class in menpofit.aam)

 	ProjectOutGaussNewton (class in menpofit.aam)

 	ProjectOutInverseCompositional (class in menpofit.aam)

 	ProjectOutNewton (class in menpofit.aam)

 	ProjectOutRegularisedLandmarkMeanShift (class in menpofit.unified_aam_clm)

 	pseudoinverse() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	(menpofit.transform.OrthoMDTransform method)

 	pseudoinverse_vector() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	(menpofit.transform.OrthoMDTransform method)

R

 	
 	random_instance() (menpofit.aam.base.AAM method)

 	(menpofit.aam.LinearAAM method)

 	(menpofit.aam.LinearMaskedAAM method)

 	(menpofit.aam.MaskedAAM method)

 	(menpofit.aam.PatchAAM method)

 	(menpofit.aps.GenerativeAPS method)

 	(menpofit.atm.LinearATM method)

 	(menpofit.atm.LinearMaskedATM method)

 	(menpofit.atm.MaskedATM method)

 	(menpofit.atm.PatchATM method)

 	(menpofit.atm.base.ATM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	reconstructed_initial_error() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	reconstructed_initial_shape() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	reconstructed_initial_shapes() (menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	reference_shape() (menpofit.aam.LucasKanadeAAMFitter property)

 	(menpofit.aam.SupervisedDescentAAMFitter property)

 	(menpofit.aps.GaussNewtonAPSFitter property)

 	(menpofit.atm.LucasKanadeATMFitter property)

 	(menpofit.clm.GradientDescentCLMFitter property)

 	(menpofit.dlib.DlibERT property)

 	(menpofit.fitter.MultiScaleNonParametricFitter property)

 	(menpofit.fitter.MultiScaleParametricFitter property)

 	(menpofit.lk.LucasKanadeFitter property)

 	(menpofit.sdm.RegularizedSDM property)

 	(menpofit.sdm.SupervisedDescentFitter property)

 	(menpofit.unified_aam_clm.UnifiedAAMCLMFitter property)

 	RegularisedLandmarkMeanShift (class in menpofit.clm)

 	RegularizedSDM (class in menpofit.sdm)

 	rescale_images_to_reference_shape() (in module menpofit.builder)

 	response_covariance() (menpofit.unified_aam_clm.UnifiedAAMCLMFitter property)

 	Result (class in menpofit.result)

 	root_mean_square_bb_normalised_error() (in module menpofit.error)

 	
 	root_mean_square_distance_indexed_normalised_error() (in module menpofit.error)

 	root_mean_square_distance_normalised_error() (in module menpofit.error)

 	root_mean_square_error() (in module menpofit.error)

 	run() (menpofit.aam.AlternatingForwardCompositional method)

 	(menpofit.aam.AlternatingInverseCompositional method)

 	(menpofit.aam.AppearanceWeightsGaussNewton method)

 	(menpofit.aam.AppearanceWeightsNewton method)

 	(menpofit.aam.MeanTemplateGaussNewton method)

 	(menpofit.aam.MeanTemplateNewton method)

 	(menpofit.aam.ModifiedAlternatingForwardCompositional method)

 	(menpofit.aam.ModifiedAlternatingInverseCompositional method)

 	(menpofit.aam.ProjectOutForwardCompositional method)

 	(menpofit.aam.ProjectOutGaussNewton method)

 	(menpofit.aam.ProjectOutInverseCompositional method)

 	(menpofit.aam.ProjectOutNewton method)

 	(menpofit.aam.SimultaneousForwardCompositional method)

 	(menpofit.aam.SimultaneousInverseCompositional method)

 	(menpofit.aam.WibergForwardCompositional method)

 	(menpofit.aam.WibergInverseCompositional method)

 	(menpofit.aps.Forward method)

 	(menpofit.aps.Inverse method)

 	(menpofit.atm.ForwardCompositional method)

 	(menpofit.atm.InverseCompositional method)

 	(menpofit.clm.ActiveShapeModel method)

 	(menpofit.clm.RegularisedLandmarkMeanShift method)

 	(menpofit.lk.ForwardAdditive method)

 	(menpofit.lk.ForwardCompositional method)

 	(menpofit.lk.InverseCompositional method)

 	(menpofit.sdm.FullyParametricMeanTemplateNewton method)

 	(menpofit.sdm.FullyParametricProjectOutGaussNewton method)

 	(menpofit.sdm.FullyParametricProjectOutNewton method)

 	(menpofit.sdm.FullyParametricProjectOutOPP method)

 	(menpofit.sdm.FullyParametricWeightsNewton method)

 	(menpofit.sdm.NonParametricGaussNewton method)

 	(menpofit.sdm.NonParametricNewton method)

 	(menpofit.sdm.NonParametricOPPRegression method)

 	(menpofit.sdm.NonParametricOptimalRegression method)

 	(menpofit.sdm.NonParametricPCRRegression method)

 	(menpofit.sdm.ParametricAppearanceMeanTemplateGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceMeanTemplateNewton method)

 	(menpofit.sdm.ParametricAppearanceProjectOutGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceProjectOutNewton method)

 	(menpofit.sdm.ParametricAppearanceWeightsGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceWeightsNewton method)

 	(menpofit.sdm.ParametricShapeGaussNewton method)

 	(menpofit.sdm.ParametricShapeNewton method)

 	(menpofit.sdm.ParametricShapeOPPRegression method)

 	(menpofit.sdm.ParametricShapeOptimalRegression method)

 	(menpofit.sdm.ParametricShapePCRRegression method)

 	(menpofit.unified_aam_clm.AlternatingRegularisedLandmarkMeanShift method)

 	(menpofit.unified_aam_clm.ProjectOutRegularisedLandmarkMeanShift method)

S

 	
 	scale_images() (in module menpofit.builder)

 	scales() (menpofit.aam.LucasKanadeAAMFitter property)

 	(menpofit.aam.SupervisedDescentAAMFitter property)

 	(menpofit.aps.GaussNewtonAPSFitter property)

 	(menpofit.atm.LucasKanadeATMFitter property)

 	(menpofit.clm.GradientDescentCLMFitter property)

 	(menpofit.dlib.DlibERT property)

 	(menpofit.fitter.MultiScaleNonParametricFitter property)

 	(menpofit.fitter.MultiScaleParametricFitter property)

 	(menpofit.lk.LucasKanadeFitter property)

 	(menpofit.sdm.RegularizedSDM property)

 	(menpofit.sdm.SupervisedDescentFitter property)

 	(menpofit.unified_aam_clm.UnifiedAAMCLMFitter property)

 	SDM() (in module menpofit.sdm)

 	search_shape() (menpofit.clm.CorrelationFilterExpertEnsemble property)

 	set_h_matrix() (menpofit.transform.DifferentiableAffine method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiableSimilarity method)

 	set_models_components() (in module menpofit.checks)

 	set_target() (menpofit.modelinstance.GlobalPDM method)

 	(menpofit.modelinstance.GlobalSimilarityModel method)

 	(menpofit.modelinstance.ModelInstance method)

 	(menpofit.modelinstance.OrthoPDM method)

 	(menpofit.modelinstance.PDM method)

 	(menpofit.transform.DifferentiableAlignmentAffine method)

 	(menpofit.transform.DifferentiableAlignmentSimilarity method)

 	(menpofit.transform.DifferentiablePiecewiseAffine method)

 	(menpofit.transform.DifferentiableThinPlateSplines method)

 	(menpofit.transform.LinearOrthoMDTransform method)

 	(menpofit.transform.OrthoMDTransform method)

 	shape_instance() (menpofit.clm.CLM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	shape_parameters() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	
 	shapes() (menpofit.aam.result.AAMAlgorithmResult property)

 	(menpofit.aam.result.AAMResult property)

 	(menpofit.aps.result.APSAlgorithmResult property)

 	(menpofit.aps.result.APSResult property)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult property)

 	(menpofit.lk.result.LucasKanadeResult property)

 	(menpofit.result.MultiScaleNonParametricIterativeResult property)

 	(menpofit.result.MultiScaleParametricIterativeResult property)

 	(menpofit.result.NonParametricIterativeResult property)

 	(menpofit.result.ParametricIterativeResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult property)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult property)

 	similarity_2d_instance_model() (in module menpofit.modelinstance)

 	SimultaneousForwardCompositional (class in menpofit.aam)

 	SimultaneousInverseCompositional (class in menpofit.aam)

 	source() (menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiablePiecewiseAffine property)

 	(menpofit.transform.DifferentiableThinPlateSplines property)

 	sparse_target() (menpofit.transform.LinearOrthoMDTransform property)

 	spatial_filter_images() (menpofit.clm.CorrelationFilterExpertEnsemble property)

 	SSD (class in menpofit.lk)

 	statistics_table() (in module menpofit.visualize)

 	steepest_descent_images() (menpofit.lk.ECC method)

 	(menpofit.lk.FourierSSD method)

 	(menpofit.lk.GradientCorrelation method)

 	(menpofit.lk.GradientImages method)

 	(menpofit.lk.SSD method)

 	steepest_descent_update() (menpofit.lk.ECC method)

 	(menpofit.lk.FourierSSD method)

 	(menpofit.lk.GradientCorrelation method)

 	(menpofit.lk.GradientImages method)

 	(menpofit.lk.SSD method)

 	SupervisedDescentAAMFitter (class in menpofit.aam)

 	SupervisedDescentFitter (class in menpofit.sdm)

T

 	
 	target() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.GlobalSimilarityModel property)

 	(menpofit.modelinstance.ModelInstance property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.modelinstance.PDM property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiablePiecewiseAffine property)

 	(menpofit.transform.DifferentiableThinPlateSplines property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	(menpofit.transform.OrthoMDTransform property)

 	template() (menpofit.aam.AlternatingForwardCompositional property)

 	(menpofit.aam.AlternatingInverseCompositional property)

 	(menpofit.aam.ModifiedAlternatingForwardCompositional property)

 	(menpofit.aam.ModifiedAlternatingInverseCompositional property)

 	(menpofit.aam.ProjectOutForwardCompositional property)

 	(menpofit.aam.ProjectOutInverseCompositional property)

 	(menpofit.aam.SimultaneousForwardCompositional property)

 	(menpofit.aam.SimultaneousInverseCompositional property)

 	(menpofit.aam.WibergForwardCompositional property)

 	(menpofit.aam.WibergInverseCompositional property)

 	(menpofit.aps.Forward property)

 	(menpofit.aps.Inverse property)

 	(menpofit.atm.ForwardCompositional property)

 	(menpofit.atm.InverseCompositional property)

 	to_result() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	train() (menpofit.aam.AppearanceWeightsGaussNewton method)

 	(menpofit.aam.AppearanceWeightsNewton method)

 	(menpofit.aam.MeanTemplateGaussNewton method)

 	(menpofit.aam.MeanTemplateNewton method)

 	(menpofit.aam.ProjectOutGaussNewton method)

 	(menpofit.aam.ProjectOutNewton method)

 	(menpofit.clm.IncrementalCorrelationFilterThinWrapper method)

 	(menpofit.math.IIRLRegression method)

 	(menpofit.math.IRLRegression method)

 	(menpofit.math.OPPRegression method)

 	(menpofit.math.OptimalLinearRegression method)

 	(menpofit.math.PCRRegression method)

 	(menpofit.sdm.FullyParametricMeanTemplateNewton method)

 	(menpofit.sdm.FullyParametricProjectOutGaussNewton method)

 	(menpofit.sdm.FullyParametricProjectOutNewton method)

 	(menpofit.sdm.FullyParametricProjectOutOPP method)

 	(menpofit.sdm.FullyParametricWeightsNewton method)

 	(menpofit.sdm.NonParametricGaussNewton method)

 	(menpofit.sdm.NonParametricNewton method)

 	(menpofit.sdm.NonParametricOPPRegression method)

 	(menpofit.sdm.NonParametricOptimalRegression method)

 	(menpofit.sdm.NonParametricPCRRegression method)

 	(menpofit.sdm.ParametricAppearanceMeanTemplateGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceMeanTemplateNewton method)

 	(menpofit.sdm.ParametricAppearanceProjectOutGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceProjectOutNewton method)

 	(menpofit.sdm.ParametricAppearanceWeightsGuassNewton method)

 	(menpofit.sdm.ParametricAppearanceWeightsNewton method)

 	(menpofit.sdm.ParametricShapeGaussNewton method)

 	(menpofit.sdm.ParametricShapeNewton method)

 	(menpofit.sdm.ParametricShapeOPPRegression method)

 	(menpofit.sdm.ParametricShapeOptimalRegression method)

 	(menpofit.sdm.ParametricShapePCRRegression method)

 	
 	transform() (menpofit.aam.AlternatingForwardCompositional property)

 	(menpofit.aam.AlternatingInverseCompositional property)

 	(menpofit.aam.AppearanceWeightsGaussNewton property)

 	(menpofit.aam.AppearanceWeightsNewton property)

 	(menpofit.aam.MeanTemplateGaussNewton property)

 	(menpofit.aam.MeanTemplateNewton property)

 	(menpofit.aam.ModifiedAlternatingForwardCompositional property)

 	(menpofit.aam.ModifiedAlternatingInverseCompositional property)

 	(menpofit.aam.ProjectOutForwardCompositional property)

 	(menpofit.aam.ProjectOutGaussNewton property)

 	(menpofit.aam.ProjectOutInverseCompositional property)

 	(menpofit.aam.ProjectOutNewton property)

 	(menpofit.aam.SimultaneousForwardCompositional property)

 	(menpofit.aam.SimultaneousInverseCompositional property)

 	(menpofit.aam.WibergForwardCompositional property)

 	(menpofit.aam.WibergInverseCompositional property)

 	(menpofit.aps.Forward property)

 	(menpofit.aps.Inverse property)

 	(menpofit.atm.ForwardCompositional property)

 	(menpofit.atm.InverseCompositional property)

 	translation_component() (menpofit.transform.DifferentiableAffine property)

 	(menpofit.transform.DifferentiableAlignmentAffine property)

 	(menpofit.transform.DifferentiableAlignmentSimilarity property)

 	(menpofit.transform.DifferentiableSimilarity property)

 	trilist() (menpofit.transform.DifferentiablePiecewiseAffine property)

U

 	
 	unified_aam_clm() (menpofit.unified_aam_clm.UnifiedAAMCLMFitter property)

 	UnifiedAAMCLM (class in menpofit.unified_aam_clm.base)

 	
 	UnifiedAAMCLMAlgorithmResult (class in menpofit.unified_aam_clm.result)

 	UnifiedAAMCLMFitter (class in menpofit.unified_aam_clm)

 	UnifiedAAMCLMResult (class in menpofit.unified_aam_clm.result)

V

 	
 	view() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.result.Result method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	view_aam_widget() (menpofit.aam.base.AAM method)

 	(menpofit.aam.LinearAAM method)

 	(menpofit.aam.LinearMaskedAAM method)

 	(menpofit.aam.MaskedAAM method)

 	(menpofit.aam.PatchAAM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	view_appearance_graph_widget() (menpofit.aps.GenerativeAPS method)

 	view_appearance_models_widget() (menpofit.aam.base.AAM method)

 	(menpofit.aam.LinearAAM method)

 	(menpofit.aam.LinearMaskedAAM method)

 	(menpofit.aam.MaskedAAM method)

 	(menpofit.aam.PatchAAM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	view_atm_widget() (menpofit.atm.base.ATM method)

 	(menpofit.atm.LinearATM method)

 	(menpofit.atm.LinearMaskedATM method)

 	(menpofit.atm.MaskedATM method)

 	(menpofit.atm.PatchATM method)

 	view_clm_widget() (menpofit.clm.CLM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	view_deformation_graph_widget() (menpofit.aps.GenerativeAPS method)

 	view_deformation_model() (menpofit.aps.GenerativeAPS method)

 	view_expert_ensemble_widget() (menpofit.clm.CLM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	view_frequency_filter_images_widget() (menpofit.clm.CorrelationFilterExpertEnsemble method)

 	view_iterations() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

 	
 	view_shape_graph_widget() (menpofit.aps.GenerativeAPS method)

 	view_shape_models_widget() (menpofit.aam.base.AAM method)

 	(menpofit.aam.LinearAAM method)

 	(menpofit.aam.LinearMaskedAAM method)

 	(menpofit.aam.MaskedAAM method)

 	(menpofit.aam.PatchAAM method)

 	(menpofit.aps.GenerativeAPS method)

 	(menpofit.atm.LinearATM method)

 	(menpofit.atm.LinearMaskedATM method)

 	(menpofit.atm.MaskedATM method)

 	(menpofit.atm.PatchATM method)

 	(menpofit.atm.base.ATM method)

 	(menpofit.clm.CLM method)

 	(menpofit.unified_aam_clm.base.UnifiedAAMCLM method)

 	view_spatial_filter_images_widget() (menpofit.clm.CorrelationFilterExpertEnsemble method)

 	view_widget() (menpofit.aam.result.AAMAlgorithmResult method)

 	(menpofit.aam.result.AAMResult method)

 	(menpofit.aps.result.APSAlgorithmResult method)

 	(menpofit.aps.result.APSResult method)

 	(menpofit.lk.result.LucasKanadeAlgorithmResult method)

 	(menpofit.lk.result.LucasKanadeResult method)

 	(menpofit.result.MultiScaleNonParametricIterativeResult method)

 	(menpofit.result.MultiScaleParametricIterativeResult method)

 	(menpofit.result.NonParametricIterativeResult method)

 	(menpofit.result.ParametricIterativeResult method)

 	(menpofit.result.Result method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMAlgorithmResult method)

 	(menpofit.unified_aam_clm.result.UnifiedAAMCLMResult method)

W

 	
 	warp_images() (in module menpofit.builder)

 	warped_images() (menpofit.aam.LucasKanadeAAMFitter method)

 	(menpofit.aam.SupervisedDescentAAMFitter method)

 	(menpofit.aps.GaussNewtonAPSFitter method)

 	(menpofit.atm.LucasKanadeATMFitter method)

 	(menpofit.lk.ForwardAdditive method)

 	(menpofit.lk.ForwardCompositional method)

 	(menpofit.lk.InverseCompositional method)

 	(menpofit.lk.LucasKanadeFitter method)

 	(menpofit.unified_aam_clm.UnifiedAAMCLMFitter method)

 	
 	weights() (menpofit.modelinstance.GlobalPDM property)

 	(menpofit.modelinstance.GlobalSimilarityModel property)

 	(menpofit.modelinstance.ModelInstance property)

 	(menpofit.modelinstance.OrthoPDM property)

 	(menpofit.modelinstance.PDM property)

 	(menpofit.transform.LinearOrthoMDTransform property)

 	WibergForwardCompositional (class in menpofit.aam)

 	WibergInverseCompositional (class in menpofit.aam)

 	with_traceback() (menpofit.builder.MenpoFitBuilderWarning method)

 	(menpofit.builder.MenpoFitModelBuilderWarning method)

 _static/minus.png

_static/plus.png

_static/file.png

_images/result.gif
) - R

ifo Resut ~ Options ~ CED Export

Final lterations

Hterations: ® Animation [}
Static

Iteration O

_images/aam.gif
g Model ~ Channels Landmarks Renderer Info

Shape Appearance

Export

Pyramid: © Level 0 (low) pErEml
@ Level 1 (high) param 1
param 2

0

nav.xhtml

 Table of Contents

 		
 Welcome

