Source code for menpo.transform.homogeneous.affine

import numpy as np

from .base import Homogeneous, HomogFamilyAlignment
from functools import reduce


class Affine(Homogeneous):
    r"""
    Base class for all ``n``-dimensional affine transformations. Provides
    methods to break the transform down into its constituent
    scale/rotation/translation, to view the homogeneous matrix equivalent,
    and to chain this transform with other affine transformations.

    Parameters
    ----------
    h_matrix : ``(n_dims + 1, n_dims + 1)`` `ndarray`
        The homogeneous matrix of the affine transformation.
    copy : `bool`, optional
        If ``False`` avoid copying ``h_matrix`` for performance.
    skip_checks : `bool`, optional
        If ``True`` avoid sanity checks on ``h_matrix`` for performance.
    """

    def __init__(self, h_matrix, copy=True, skip_checks=False):
        Homogeneous.__init__(self, h_matrix, copy=copy, skip_checks=skip_checks)

    @classmethod
    def init_identity(cls, n_dims):
        r"""
        Creates an identity matrix Affine transform.

        Parameters
        ----------
        n_dims : `int`
            The number of dimensions.

        Returns
        -------
        identity : :class:`Affine`
            The identity matrix transform.
        """
        return cls(np.eye(n_dims + 1), copy=False, skip_checks=True)

    @classmethod
    def init_from_2d_shear(cls, phi, psi, degrees=True):
        r"""
        Convenience constructor for 2D shear transformations about the origin.

        Parameters
        ----------
        phi : `float`
            The angle of shearing in the X direction.
        psi : `float`
            The angle of shearing in the Y direction.
        degrees : `bool`, optional
            If ``True`` phi and psi are interpreted as degrees.
            If ``False``, phi and psi are interpreted as radians.

        Returns
        -------
        shear_transform : :map:`Affine`
            A 2D shear transform.
        """
        if degrees:
            phi = np.deg2rad(phi)
            psi = np.deg2rad(psi)
        # Create shear matrix
        h_matrix = np.eye(3)
        h_matrix[0, 1] = np.tan(phi)
        h_matrix[1, 0] = np.tan(psi)
        return cls(h_matrix, skip_checks=True)

    @property
    def h_matrix(self):
        r"""
        The homogeneous matrix defining this transform.

        :type: ``(n_dims + 1, n_dims + 1)`` `ndarray`
        """
        return self._h_matrix

    def _set_h_matrix(self, value, copy=True, skip_checks=False):
        r"""
        Updates the `h_matrix`, performing sanity checks.

        Parameters
        ----------
        value : `ndarray`
            The new homogeneous matrix to set
        copy : `bool`, optional
            If ``False`` do not copy the h_matrix. Useful for performance.
        skip_checks : `bool`, optional
            If ``True`` skip sanity checks on the matrix. Useful for performance.
        """
        if not skip_checks:
            shape = value.shape
            if len(shape) != 2 or shape[0] != shape[1]:
                raise ValueError("You need to provide a square homogeneous " "matrix")
            if self.h_matrix is not None:
                # already have a matrix set! The update better be the same size
                if self.n_dims != shape[0] - 1:
                    raise ValueError(
                        "Trying to update the homogeneous "
                        "matrix to a different dimension"
                    )
            if shape[0] - 1 not in [2, 3]:
                raise ValueError("Affine Transforms can only be 2D or 3D")
            if not (np.allclose(value[-1, :-1], 0) and np.allclose(value[-1, -1], 1)):
                raise ValueError("Bottom row must be [0 0 0 1] or [0, 0, 1]")
        if copy:
            value = value.copy()
        self._h_matrix = value

    @property
    def linear_component(self):
        r"""
        The linear component of this affine transform.

        :type: ``(n_dims, n_dims)`` `ndarray`
        """
        return self.h_matrix[:-1, :-1]

    @property
    def translation_component(self):
        r"""
        The translation component of this affine transform.

        :type: ``(n_dims,)`` `ndarray`
        """
        return self.h_matrix[:-1, -1]

    def decompose(self):
        r"""
        Decompose this transform into discrete Affine Transforms.

        Useful for understanding the effect of a complex composite transform.

        Returns
        -------
        transforms : `list` of :map:`DiscreteAffine`
            Equivalent to this affine transform, such that

            .. code-block:: python

                reduce(lambda x, y: x.chain(y), self.decompose()) == self

        """
        from .rotation import Rotation
        from .translation import Translation
        from .scale import Scale

        U, S, V = np.linalg.svd(self.linear_component)
        rotation_2 = Rotation(U)
        rotation_1 = Rotation(V)
        scale = Scale(S)
        translation = Translation(self.translation_component)
        return [rotation_1, scale, rotation_2, translation]

    def _transform_str(self):
        r"""
        A string representation explaining what this affine transform does.
        Has to be implemented by base classes.

        Returns
        -------
        str : `str`
            String representation of transform.
        """
        header = "Affine decomposing into:"
        list_str = [t._transform_str() for t in self.decompose()]
        return header + reduce(lambda x, y: x + "\n" + "  " + y, list_str, "  ")

    def _apply(self, x, **kwargs):
        r"""
        Applies this transform to a new set of vectors.

        Parameters
        ----------
        x : ``(N, D)`` `ndarray`
            Array to apply this transform to.

        Returns
        -------
        transformed_x : ``(N, D)`` `ndarray`
            The transformed array.
        """
        return np.dot(x, self.linear_component.T) + self.translation_component

    @property
    def n_parameters(self):
        r"""
        ``n_dims * (n_dims + 1)`` parameters - every element of the matrix but
        the homogeneous part.

        :type: int

        Examples
        --------
        2D Affine: 6 parameters::

            [p1, p3, p5]
            [p2, p4, p6]


        3D Affine: 12 parameters::

            [p1, p4, p7, p10]
            [p2, p5, p8, p11]
            [p3, p6, p9, p12]

        """
        return self.n_dims * (self.n_dims + 1)

    def _as_vector(self):
        r"""
        Return the parameters of the transform as a 1D array. These parameters
        are parametrised as deltas from the identity warp. This does not
        include the homogeneous part of the warp. Note that it flattens using
        Fortran ordering, to stay consistent with Matlab.

        **2D**

        ========= ===========================================
        parameter definition
        ========= ===========================================
        p1        Affine parameter
        p2        Affine parameter
        p3        Affine parameter
        p4        Affine parameter
        p5        Translation in `x`
        p6        Translation in `y`
        ========= ===========================================

        3D and higher transformations follow a similar format to the 2D case.

        Returns
        -------
        params : ``(n_parameters,)`` `ndarray`
            The values that parametrise the transform.
        """
        params = self.h_matrix - np.eye(self.n_dims + 1)
        return params[: self.n_dims, :].ravel(order="F")

    def _from_vector_inplace(self, p):
        r"""
        Updates this Affine in-place from the new parameters. See
        from_vector for details of the parameter format
        """
        h_matrix = None
        if p.shape[0] == 6:  # 2D affine
            h_matrix = np.eye(3)
            h_matrix[:2, :] += p.reshape((2, 3), order="F")
        elif p.shape[0] == 12:  # 3D affine
            h_matrix = np.eye(4)
            h_matrix[:3, :] += p.reshape((3, 4), order="F")
        else:
            ValueError(
                "Only 2D (6 parameters) or 3D (12 parameters) "
                "homogeneous matrices are supported."
            )
        self._set_h_matrix(h_matrix, copy=False, skip_checks=True)

    @property
    def composes_inplace_with(self):
        r"""
        :class:`Affine` can swallow composition with any other :class:`Affine`.
        """
        return Affine


class AlignmentAffine(HomogFamilyAlignment, Affine):
    r"""
    Constructs an :class:`Affine` by finding the optimal affine transform to
    align `source` to `target`.

    Parameters
    ----------
    source : :map:`PointCloud`
        The source pointcloud instance used in the alignment
    target : :map:`PointCloud`
        The target pointcloud instance used in the alignment

    Notes
    -----
    We want to find the optimal transform M which satisfies :math:`M a = b`
    where :math:`a` and :math:`b` are the `source` and `target` homogeneous
    vectors respectively. ::

       (M a)' = b'
       a' M' = b'
       a a' M' = a b'

    `a a'` is of shape `(n_dim + 1, n_dim + 1)` and so can be inverted
    to solve for `M`.

    This approach is the analytical linear least squares solution to the
    problem at hand. It will have a solution as long as `(a a')` is
    non-singular, which generally means at least 2 corresponding points are
    required.
    """

    def __init__(self, source, target):
        # first, initialize the alignment
        HomogFamilyAlignment.__init__(self, source, target)
        # now, the Affine
        optimal_h = self._build_alignment_h_matrix(source, target)
        Affine.__init__(self, optimal_h, copy=False, skip_checks=True)

    @staticmethod
    def _build_alignment_h_matrix(source, target):
        r"""
        Returns the optimal alignment of `source` to `target`.

        Parameters
        ----------
        source : :map:`PointCloud`
            The source pointcloud instance used in the alignment
        target : :map:`PointCloud`
            The target pointcloud instance used in the alignment
        """
        a = source.h_points()
        b = target.h_points()
        return np.linalg.solve(np.dot(a, a.T), np.dot(a, b.T)).T

    def _set_h_matrix(self, value, copy=True, skip_checks=False):
        r"""
        Updates ``h_matrix``, optionally performing sanity checks.

        .. note::

            Updating the ``h_matrix`` on an :map:`AlignmentAffine`
            triggers a sync of the target.

        Note that it won't always be possible to manually specify the
        ``h_matrix`` through this method, specifically if changing the
        ``h_matrix`` could change the nature of the transform. See
        :attr:`h_matrix_is_mutable` for how you can discover if the
        ``h_matrix`` is allowed to be set for a given class.

        Parameters
        ----------
        value : `ndarray`
            The new homogeneous matrix to set
        copy : `bool`, optional
            If ``False`` do not copy the h_matrix. Useful for performance.
        skip_checks : `bool`, optional
            If ``True`` skip checking. Useful for performance.

        Raises
        ------
        NotImplementedError
            If :attr:`h_matrix_is_mutable` returns ``False``.
        """
        Affine._set_h_matrix(self, value, copy=copy, skip_checks=skip_checks)
        # now update the state
        self._sync_target_from_state()

    def _sync_state_from_target(self):
        optimal_h = self._build_alignment_h_matrix(self.source, self.target)
        # Use the pure Affine setter (so we don't get syncing)
        # We know the resulting affine is correct so skip the checks
        Affine._set_h_matrix(self, optimal_h, copy=False, skip_checks=True)

    def as_non_alignment(self):
        r"""
        Returns a copy of this :map:`Affine` without its alignment nature.

        Returns
        -------
        transform : :map:`Affine`
            A version of this affine with the same transform behavior but
            without the alignment logic.
        """
        return Affine(self.h_matrix, skip_checks=True)


class DiscreteAffine(object):
    r"""
    A discrete Affine transform operation (such as a :meth:`Scale`,
    :class:`Translation` or :meth:`Rotation`). Has to be invertable. Make sure
    you inherit from :class:`DiscreteAffine` first, for optimal
    `decompose()` behavior.
    """

    def decompose(self):
        r"""
        A :class:`DiscreteAffine` is already maximally decomposed -
        return a copy of self in a `list`.

        Returns
        -------
        transform : :class:`DiscreteAffine`
            Deep copy of `self`.
        """
        return [self.copy()]